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Estimation of stereo camera motion
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Th e paper presents an algorithm for estimating the motion of a stereovision camera. Th e movement is calculated on the base of 
a sequence of depth pictures. While moving the camera can be held in hands without much impact on the prediction accuracy. 
Th e algorithm provides real-time data processing when a 2.5 GHz dual core computer is used.
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between the subsequent frames. At times, errors are 
caused by moving objects.

Related work

Many algorithms for es timating motion of a camera have 
been already developed. Recently, an interesting class of 
techniques, SLAM (Simultaneous Localization And 
Mapping) has arisen. Commonly used EKF-SLAM [2] 
merges data from inertial sensors and characteristic 
points in pictures. In a similar way FastSLAM [3] works. 
It employs additionally particle fi ltering, yielding 
superior results. Th e drawback of this method is the 
necessity to use inertial sensors. 

A  related project is shown in [4]. A  stereoscopic 
camera, tri-axial accelerometer and a magnetometer are 
mounted rigidly on the user. Th e accelerometer is used 
to detect step instants, whereupon the camera is triggered, 
giving a frame rate of 2fps. Th is eliminates camera swings 
and results in more stable pictures. Th e algorithm singles 
out traceable features. Multi-target tracking is supported 
by a  Kalman lter. Th e infuence of moving objects is 
reduced by the RANSAC estimator. Neither the usage 
of the magnetometer nor the responsiveness to rotations 
were commented. Th e methodology was not validated 
by practical trials.

PTAM [5] is a technique that bases entirely on vision 
data for motion estimation. Th e motion is solely 
estimated from a monocamera. An initialization routine 

Introduction

Th e motion estimation algorithms are used in many 
fi elds, among others robotics and car industry. GPS 
readouts are not always available e.g. indoor and 
underground areas, tunnels and so forth. Moreover, in 
an urban environment GPS inaccuracies can reach as 
much as 100 m [1]. Hence, motion estimation is 
commonly used to supplement poor quality GPS 
readouts. An accelerometer measures accelerations which 
can be transformed into displacement by double 
integration. Th e errors grow quadratically over time. 
Encoders mounted on a robot’s wheels yield much better 
distance estimation, providing that the signals from the 
encoders can be easily accessible, which is not always the 
case e.g. a car. A wheel can also slip which introduces an 
error. Th erefore these method are combined with other 
methods like computer vision which has very interesting 
properties. 

Th e algorithms for estimating the motion of a camera 
are the subject of many research projects. Subsequent 
frames are analyzed to determine which picture areas are 
motionless. Th ese areas are employed to calculated the 
camera movement. Most algorithms use a  stereoscopic 
camera. Under some additional circumstances, the task 
can be accomplished by using a  monocamer. Th e 
problem of calculating a camera motion is complex and 
so far no algorithm provides good results in the long run. 
Th e crux of the problem is to fi nd correspondent areas 
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is required, whereby the monocamera is shifted to 
capture two pictures. Consequently, a reference 3D map 
of the surroundings is created. As the camera starts to 
move, its movement vector is estimated on the base of 
the reference 3D map. At the same time, the 3D map of 
a  new area is built. When exploring new areas, the 
current camera state is estimated on the base of the 
previous one what leads to a fast accumulation of errors. 
Th e algorithm performs very well for small, closed areas. 
Th e camera movement is estimated by the RANSAC 
estimator. 

The abovementioned techniques impose big 
computational burden, which confi nes their usage to 
fairly simple scenes. 

Th e solution presented in this paper neither requires 
inertial sensors nor imposes any scene complexity limita-
tions. Th e camera can be mounted on a stable robot as 
well as held in hands without much negative infl uence 
on the precision of motion estimation. Th e algorithm 
was validated by a  2.5 km long path, that exhibited 
diver sity like hanging tree branches, sun exposure, 
shadow and so on. Th e obtained preliminary results are 
quite satisfactory, though some glitches require 
refi nement.

Algorithm description

Th e motion algorithm is depicted by the block diagram 
in Fig. 1. Pictures captured by the camera are converted 
into greyscale. Th e fi rst frame serves as a key frame. Fast-
10 [6], a corner detection algorithm, singles out stable 
corners. Th e next frame is compared against the key one 
in terms of corners. Pyramidal Implementation of the 
Lucas Kanade Feature Tracker [7] is applied to fi nd 
corner correspondence. Th e paramount part of the 
algorithm is to calculate the motion of the camera. If the 
camera changes its orientation considerably, the current 
frame and the associated corners are stored as a reference 
for the subsequent frames. Th e algorithm iterates 
onwards. 

Fig. 1. System diagram.

Corners detection

Stable corners in a picture are detected by the Fast-10 
algorithm [6]. Up to 2000 corners are singled out, 

where upon they are sorted for disparity values — closer 
points to the camera come fi rst. Corners, whose 
disparities are not accurate, are eliminated. Only up to 
100 points are seleted to the next step of the algorithm. 
Th e disparity value plays a  crucial role for motion 
estimation, thus must be carried out carefully. Th e 
accuracy of disparity degrades heavily with the distance. 
Empirically, the algorithm divides selected points in this 
way, that 90% of them are in the distance not larger 
than 5m from the camera. Remaining points constitute 
an separate set. Performed tests showed, that motion 
estimation based only on the closest points is 
encumbered with larger errors. Th e proposed ratio 
between close and distant points strikes a  good trade-
off . Th e disparity for closer points can be estimated 
more accurately however they are often blurred and may 
vanish in the next frames, what thwarts to fi nd a good 
corners correspondence between subsequent frames. 
Sometimes corners are falsely matched. If these 
correspondences correlate, then camera movement is 
misjudged. 

Corners matching

Corner correspondence is found by the algorithm 
presented in [7]. A corner match is evaluated by the SSD 
method (Sum of Squared Diff erence). To speed up the 
corner detection, a pyramidal search is performed. In the 
fi rst step, pictures of lower resolutions are compared, 
where coarse matches are detected. A native resolution, 
with subpixel refi nement, is applied to estimate shifts 
between the corresponding corners. For this purpose, 
a  10 by 10 pixel window is used. Th e method often 
results in corner mismatches (see Fig. 2), whose infl uence 
is eliminated by the RANSAC algorithm, presented in 
the following section. 

Fig 2. Corners pairing between two successive images. 
Some corners are mismatched, though as long as these 
errors are not strongly correlated, the motion is estimated 
correctly. 



El
ec

tr
on

ic
s 

an
d 

In
fo

rm
at

io
n 

Te
ch

no
lo

gi
es

29

Estimation of stereo camera motionEstimation of stereo camera motion

Motion vector estimation

To calculate the camera motion between two successive 
frames, equation (1) needs to be solved. Th is equation 
can be derived on the base of Fig. 3. Th ree corners are 
required to satisfy the equation. A  larger number of 
points, however, improves the quality of motion 
estimation, sine the coordinates of every point are 
encumbered with an error. Usually, the Least Square 
method is used to estimate function coeffi  cients from 
a series of uncertain observations. Th e function describes 
a  process of interest. LS is vulnerable to outliers that 
largely bias the fi nal estimation. RANSAC [8] was found 
to be vastly superior to LS, as the former has the ability 
to be totally insensitive to the outliers as long as they are 
not strongly correlated, see Fig. 4. 

Th e RANSAC algorithm was applied in the following 
way. At the outset, the algorithm picks up randomly 
three points. Using these points, a  motion vector is 
calculated. Th e algorithm iterates through the rest of the 
points and checks if the motion model is satisfi ed, 
assuming a  given error. Th en the motion vector is 
recalculated on the base of all selected points and the 
algorithm calculates parameters, that refl ect the quality 
of motion model. Th e diff erence between the calculated 
location (on the base of the motion vector) and the 
actual location in the picture is calculated for each point. 
Th ese errors are summed up and divided by the squared 
number of the points. Th e error and motion vector 
values are stored. Th e algorithm picks up randomly 
another three points and repeats the above procedure. 
After a given number of iteration, the algorithm singles 
out the most accurate motion vector.

(1)

where: u, v — point velocity in image;
 f — focal length;
 x, y — point coordinates;
 Z — point distance from camera;
 U, V, W — camera motion;
 , , g — camera rotation.

Results

Th e algorithm is implemented in C++ with OpenCV 
routines [10]. Th e application runs on a 2.5 GHz double 
core processor. Pictures with depth information are 
captured by the stereovision camera Bumblebee2 [11].

Th e motion estimation algorithm was tested around 
the University Campus with two paths, each of them ca. 

2.5 km long. Th e camera was carried in hands and was 
directed along the walking direction. Th e acquired 
sequence of pictures exhibited vertical waving due to 
placed steps. Also horizontal waving, due to sideways 
slanting of the body is also present. 

Figures 5a and 5b presents the true and the estimated 
paths. Darker shade corresponds to larger number of 
points used for calculation of the motion vector, light for 
a  smaller number of points. Th e crosses stand for the 
places, where the algorithm could not estimate the 
motion. Th ere are two main sources of path estimation 
inaccuracy. Th e fi rst problem was with the estimation of 
an orientation change during turns. Th e algorithm was 
unable to fi nd corresponding features in the subsequent 
pictures due to low frame acquisition rate (around 7 fps), 
although the person holding the camera walked with 
a normal pace. Th e second problem is associated with 
a direction drift, rendered by hanging down branches of 
trees. Th e algorithm mismatched points on trees between 
successive frames. In the case of correlated errors, the 
direction was misjudged. Th e distance was indicated 
precisely, as shown in Table 1. Th e distance measurement 
error is lower than 5%. 
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Fig. 3. The relationship between the camera motion and 
motion of the points in the analysed picture [9].

Fig. 4. An illustration of the RANSAC algorithm. The thick 
line is the best fi tted one. The thin line represents a worse 
line model. The thick line is not biased by the points that 
were not fi tted in the line model. 
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Table 1. The measured and the true distance. 

path real distance (m) estimated distance (m)

1 ca. 2550 2473
2 ca. 2400 2439

Conclusions

Th e presented algorithm correctly estimates the motion 
of the camera in most tested cases. Th e eff ectiveness is 
compromised by the evaluation of the orientation 
changes. Th e distance measurement is quite precise, up 

to 5%. Th e encountered problems warrant further work. 
Firstly, the algorithm should be optimized for speed, so 
that better frame rate can be achieved, which is especially 
important during turns. Direction drifts can be reduced 
by detecting and tracing of far located landmarks. Another 
idea that is worth testing relays on so called detection of 
loop closure. If the camera revisits a neighbourhood of 
a  given place, then the algorithm calculate a  relative 
location to that place. Th e path (distance and angles) is 
then corrected so that these two locations coincide. Th is 
idea is extensively used in SLAM systems. 

a)

b)

Fig. 5. (a) The real path (on the left) and the estimated path (on the right) — path I. (b) The real path (on the left) and 
the estimated path (on the right) — path II.
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