PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Failure analysis of fibre metal laminate channel section column under axial compressive pulse loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study aims to analyse the dynamic buckling phenomenon and assess the role of the stress tensor components in the failure process of a short fibre metal laminate column under axial compressive dynamic loading. The investigation is focused on a channel-section profile composed of three aluminium layers and two doubled composite plies [Al/0/90/Al/90/0/Al]. The numerical analysis was performed on the finite element model, which was validated by experimental static buckling tests. Employing a progressive failure algorithm, this analysis incorporated the material property degradation method and Hashin’s criterion as the damage initiation criterion. Failure initiation in metal layers was based on the Huber-Mises-Hencky failure criterion. Based on the conducted analyses, it was concluded that the dominant forms of destruction in the FML structure are yielding in the metal layers due to excessive compressive stresses and the failure of the matrix in composite plies as a result of compressive and shear stresses. Through a thorough examination of the stress tensor components, critical stresses contributing to aluminium plastic deformation and laminate failure mechanisms were identified.
Rocznik
Strony
art. no. e151048
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Department of Strength of Materials, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
Bibliografia
  • [1] A. Dorigato, “Recycling of thermosetting composites for wind blade application,” Adv. Ind. Eng. Polym. Res., no. 5, pp. 116–132, 2021, doi: 10.1016/j.aiepr.2021.02.002.
  • [2] J. Chroscielewski, M. Miskiewicz, Ł. Pyrzowski, M. Rucka, B. Sobczyk and K. Wilde, “Modal properties identification of a novel sandwich footbridge – Comparison of measured dynamic response and FEA,”. Compos B Eng., vol. 151, pp. 245–255, 2018, doi: 10.1016/j.compositesb.2018.06.016.
  • [3] R. Degenhardt, K. Rohwer, W. Wagner, and J.P. Delsemme, “Postbuckling and collapse analysis of CFRP stringer stiffened panels – a garteur activity,” in Proc. 4𝑡 ℎ Conf. on Thin-Walled Structures, Loughborough, England, 2004.
  • [4] R.M. Jones, Mechanics of Composite Materials, 2nd ed., Philadelphia: Taylor & Francis, 1999.
  • [5] J. Sinke, “Development of fibre metal laminates: concurrent multi-scale modelling and testing,” J. Mater. Sci., vol. 41, pp. 6777–6788, 2006.
  • [6] X. Hao, H. Nie, Z. Ye, Y. Luo, L. Zheng, and W. Liang, “Mechanical properties of a novel fiber metal laminate based on a carbon fiber reinforced Zn-Al alloy composite,” Mater Sci Eng A, vol. 740–741, pp. 218–25, 2019, doi: 10.1016/j.msea.2018.10.050.
  • [7] E. Sherkatghanad, L. Lang, H. Blala, L. Li, and S. Alexandrov, “Fiber metal laminate structure, a good replacement for mono-lithic and composite materials,” Mater. Sci. Eng., vol. 576, pp. 1–9, 2019, doi: 10.1088/1757-899X/576/1/012034.
  • [8] A. Vlot, Glare: History of the development of a new aircraft material, Dordrecht: Kluwer Acad. Publ, 2001.
  • [9] D. Banat and R.J. Mania, “Stability and strength analysis of thin-walled GLARE composite profiles subjected to axial loading,” Compos. Struct., vol. 212, pp. 338–345, 2019, doi: 10.1016/j.compstruct.2019.01.052.
  • [10] A. Gliszczynski and T. Kubiak, “Load-carrying capacity of thin-walled composite beams subjected to pure bending,” Thin-Walled Struct., vol. 115, pp. 76–85, 2017, doi: 10.1016/j.tws.2017.02.009.
  • [11] Z. Zhao, T. Yang, F. Zhang, and P. Ma, “Postbuckling behaviour and failure prediction of large-size composite C-beam under bending-shear coupling load,” Polymer Compos., vol. 44, no. 2, pp. 4266–4278, 2023, doi: 10.1002/pc.27396.
  • [12] M. Zaczynska, H. Abramovich, and C. Bisagni, “Parametric studies on the dynamic buckling phenomenon of a composite cylindrical shell under impulsive axial compression,” J. Sound Vibr., vol. 482, p. 115462, 2020, doi: 10.1016/j.jsv.2020.115462.
  • [13] R. Bi, Y. Fu, Y. Tian, and C. Jiang, “Buckling and postbuckling analysis of elasto-plastic fiber metal laminates,” Acta Mech. Solid. Sin., vol. 27, no. 1, pp. 73–84, 2014, doi: 10.1016/S0894-9166(14)60018-5.
  • [14] P.P.Y. Muddappa, G. Giridhara, and T. Rajanna, “Buckling behavior of GLARE panels subjected to partial edge loads,” Mater. Today Proc., vol. 45, pp. 94–99, 2021, doi: 10.1016/j.matpr.2020.10.099.
  • [15] M. Soltani and A. Soltani, “An Efficient Approach into Finite Element Method for Lateral Buckling Analysis of Fiber-Metal Laminates Tapered I-Beams,” Periodica Polytechnica Civil Engineering, 2022, doi: 10.3311/PPci.18978.
  • [16] M. Niazi and M. Homayoune Sand, “Numerical Shear Buckling Investigation of GLAREs with Initial Delamination,” Adv. Mat. Sci. Eng., vol, 2022, p. 905917, 2022, doi: 10.1155/2022/9059917.
  • [17] R.J. Mania, “Comparative static buckling study of FML thin-walled profiles,” in ECCM16 – 16th Eur. Conf. Compos. Mater., Seville, 2014
  • [18] J. Bienias, R.J. Mania, P. Jakubczak, and K. Majerski, “The issues of manufacturing of geometrically complicated elements by using FML laminates,” Compos. Theory Pract., vol. 15, no. 4, pp. 243–249, 2015.
  • [19] R.J. Mania, Z. Kolakowski, and J. Bienias, “Comparative study of FML profiles buckling and postbuckling behaviour under axial loading,” Compos. Struct., vol. 134, pp. 216–225, 2015, doi: 10.1016/j.compstruct.2015.08.093.
  • [20] D. Banat and R.J. Mania, “Modelling of boundary conditions in Fiber Metal Laminate buckling investigations,” in Statics, Dyn. Stab. Struct. Buckling Plate Struct. Anal. Numer. Exp. Investig, 4th ed., R.J. Mania (Ed.), Lodz University of Technology Series of Monographs, 2016, pp. 49–66.
  • [21] T. Kubiak and R.J. Mania, “Hybrid versus FR Laminate Channel Section Columns – Buckling and Postbuckling Behaviour,” Compos. Struct., vol. 154, pp. 142–149, 2016, doi: 10.1016/j.compstruct.2016.07.040.
  • [22] R.J. Mania and C.B York, “Buckling strength improvements for Fibre Metal Laminates using thin-ply tailoring,” Compos. Struct., vol. 159, pp. 424–32, 2017, doi: 10.1016/j.compstruct.2016.09.097.
  • [23] D. Banat and R.J. Mania, “Failure assessment of thin-walled FML profiles during buckling and postbuckling response,” Compos. Part B-Eng., vol. 112, pp. 278–289, 2017, doi: 10.1016/j.compositesb.2017.01.001.
  • [24] D. Banat, R.J. Mania, and R. Degenhardt, “Stress State Failure Analysis of Thin-Walled GLARE Composite Members Subjected to Axial Loading in the Post-Buckling Range,” Compos. Struct., vol. 289, p. 115468, 2022.
  • [25] D. Banat and R.J. Mania, “Progressive Failure Analysis of Thin-Walled Fibre Metal Laminate Columns Subjected to Axial Compression,” Thin-Walled Struct., vol. 122, pp. 52–63, 2022, doi: 10.1016/j.tws.2017.09.034.
  • [26] T. Kubiak, “Dynamic buckling of thin-walled composite plates with varying width wise material properties,” Int. J. Solids Struct., vol. 45, pp. 5555–5567, 2005, doi: 10.1016/j.ijsolstr.2005.02.043.
  • [27] K. Kowal-Michalska, “About Some Important Parameters in Dynamic Buckling Analysis of Plated Structures Subjected to Pulse Loading,” Mech. Mech. Eng., vol. 14, no. 2, pp. 269–279, 2010.
  • [28] B. Yang, C. Guedes Soares, and D. Wang, “An empirical formulation for predicting the dynamic ultimate strength of rectangular plates under in-plane compressive loading,” Int. J. Mech. Sci., vol. 141, pp. 213–222, 2018, doi: 10.1016/j.ijmecsci.2018.04.015.
  • [29] H. Less and H. Abramovich, “Dynamic buckling of a laminated composite stringer-stiffened cylindrical panel,” Compos. Part B-Eng., vol. 43, pp. 2348–2358, 2012, doi: 10.1016/j.compositesb.2011.11.070.
  • [30] RJ. Mania, “Dynamic buckling of FML thin-walled panels under axial compression,” in Stability of Structures XV-th Symposium, Zakopane, 2018.
  • [31] RJ. Mania, “Multi-criterial assessment of dynamic buckling of FML thin-walled profiles,” in XV Konf. N-T, TKI 2018, Mikołajki, 2018.
  • [32] M. Zaczynska and RJ. Mania, “Investigation of dynamic stability of Fiber Metal Laminate thin-walled columns under axial compression,” Compos. Struct., vol. 271, p. 114155, 2021, doi: 10.1016/j.compstruct.2021.114155.
  • [33] M. Zaczynska and RJ. Mania, “Dynamic stability of thin-walled FML columns including delamination,” Compos. Struct., vol. 290, p. 115478, 2020, doi: 10.1016/j.compstruct.2022.115478.
  • [34] Y. Huang, J. Liu, X. Huang, J. Zhang, and G. Yue, “Delamination and fatigue crack growth behavior in Fiber Metal Laminates (Glare) under single overloads,” Int. J. Fatigue, vol. 78, p. 53–60, 2015, doi: 10.1016/j.ijfatigue.2015.04.002.
  • [35] S.P. Timoshenko and J.N. Goodier, Theory of elasticity, McGraw Hill Book Company,1951.
  • [36] AN. Kounadis, C. Gantes, and G. Simitses, “Nonlinear dynamic buckling of multi-dof structural dissipative system under impact loading,” Int. J. Impact Eng., vol. 19, no. 1, pp. 63–80, 1997, doi: 10.1016/S0734-743X(96)00006-1.
  • [37] I. Lapczyk and J.A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Compos. Part A Appl. Sci. Manuf., vol. 38, pp. 2333–2341, 2007, doi: 10.1016/j.compositesa.2007.01.017.
  • [38] R. Talreja and C.V. Singh, Damage and failure of composite materials, Cambridge, New York: Cambridge University Press; 2012.
  • [39] User’s Guide ANSYS®2021 R2, Ansys, Inc., Canonsburg, PA, USA, 2021.
  • [40] M. Kamocka, M. Zglinicki, and RJ. Mania, “Multi-method approach for FML mechanical properties prediction,” Compos. Part B-Eng., vol. 91, pp. 135–145, 2016, doi: 10.1016/j.compositesb.2016.01.014.
  • [41] M. Kamocka and R.J. Mania, “Assesments methods of mechanical properties of composite materials,” Mech. Mech. Eng., vol. 21, no. 4, pp. 1001–1014, 2017.
  • [42] G.J. Simitses, Dynamic stability of suddenly loaded structures. New York: Springer–Verlag, 1990.
  • [43] M. Paszkiewicz and T. Kubiak, “Selected problems concerning determination of the buckling load of channel section beams and columns,” Thin-Walled Struct., vol. 93, pp. 112–121, 2015, doi: 10.1016/j.tws.2015.03.009.
  • [44] A. Quadrino, R. Penna, L. Feo, and N. Nistico, “Mechanical characterization of pultruded elements: Fiber orientation influence vs web-flange junction local problem. Experimental and numerical tests,” Compos. Part B-Eng., vol. 142, pp. 68–84, 2018, doi: 10.1016/j.compositesb.2018.01.001.
  • [45] P. Rozylo and H. Debski, “Failure Study of Compressed Thin-Walled Composite Columns with Top-Hat Cross-Section,” Thin-Walled Struct., vol. 180, p. 109869, 2022, doi: 10.1016/j.tws.2022.109869.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-202ff841-3d02-404d-8dd5-db56f6086dea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.