PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of winter road maintenance on the presence of chlorides in wastewater entering small treatment plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the appearance of the first snowfall, there is a revival of discussion on effective methods of protecting road surfaces and sidewalks against icing. In Poland and many other countries, so-called road salt, mainly sodium chloride (NaCl) with additives, is often used to lower the melting point of snow and ice. Using chemicals to protect road surfaces brings many negative side effects reported in the literature. Less frequently published research results indicate, and also alarm, that increased chloride concentrations can appear in wastewater flowing into sanitary (separate) sewers. In the case of small wastewater treatment plants, increased chloride concentrations can have a negative impact primarily on the biological processes of wastewater treatment and, after discharge from the wastewater treatment plant, on the biological life in the waters and the nearest recipient environment of the treated wastewater. The study aimed to determine the concentrations and loads of chlorides in wastewater flowing through the distribution sewer system to 4 small wastewater treatment plants located in Poland, in the Lesser Poland Province, during snowmelt and heavy rainfall in 2019-2023. The study showed a significant increase in concentrations and loads of chlorides in wastewater in February. Unit chloride load in raw sewage during snowmelt varied from 7 to 12 kg∙d-1 per 1 km length of separate sewer network. There was also a repeated, but much lower, increase in chloride concentrations during summer and autumn precipitation. This is when the leaching of residual salt accumulated around the road surface occurred.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
184--190
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Department of Sanitary Engineering and Water Management, Al. Mickiewicza St. 24/28, 30-059 Kraków, Poland
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Department of Sanitary Engineering and Water Management, Al. Mickiewicza St. 24/28, 30-059 Kraków, Poland
  • Warsaw University of Life Sciences, Department of Environmental Management, Institute of Environmental Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • Assel van, J., Kroll, S. and Delgado, R. (2023) “Calculation of dry weather flows in pumping stations to identify inflow and infiltration in urban drainage systems,” Water, 15(5), 864, pp. 1–23. Available at: https://doi.org/10.3390/w15050864.
  • Bach, A. and Pawłowska, B. (2007) “Wpływ zanieczyszczenia środowiska na stan roślinności drzewiastej w Krakowie [The impact of environmental pollution on the condition of tree plants in Kraków],” Czasopismo Techniczne, Architektura, 10, pp. 114–116. Available at: https://repozytorium.biblos.pk.edu.pl/redo/resources/34826/file/suwFiles/BachA_WplywZanieczyszczenia. pdf (Accessed: June 12, 2024).
  • Corsi, S.R. et al. (2015) “River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons,” Science of The Total Environment, 508, pp. 488–497. Available at: https://doi.org/10.1016/j.scitotenv.2014.12.012.
  • Czarna, M. (2013) “Przegląd środków chemicznych stosowanych w zimowym utrzymaniu dróg w Polsce [Overview of chemicals used in winter road maintenance in Poland],” Zeszyty Naukowe Uniwersytetu Zielonogórskiego, 31, pp. 18–26. Available at: http://zbc.uz.zgora.pl/Content/45586/PDF/2_czarna_przeglad.pdf (Accessed: June 12, 2024).
  • Dąbrowska, J. et al. (2014) “Methods of protecting roadside greenery from the harmful effects of road salt,” Architektura Krajobrazu, 3, pp. 44–55. Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-480029f2-7775-450f-89fb-ff0a20ef4c26/c/dabrowska_methods_3_2014.pdf (Accessed June 12, 2024).
  • Dou, W. et al. (2022) “A review on the removal of Cl(-I) with high concentration from industrial wastewater: Approaches and mechanisms,” Science of The Total Environment, 824, 153909, Available at: https://doi.org/10.1016/j.scitotenv.2022.153909.
  • Dugan, H.A. et al. (2020) “Lakes at risk of chloride contamination,” Environmental Science & Technology, 54, pp. 6639–6650. Available at: https://doi.org/10.1021/acs.est.9b07718.
  • Dugan, H.A. and Arnott, S.E. (2022) “The ecosystem implications of road salt as a pollutant of freshwaters,” Wiley Interdisciplinary Reviews: Water, 10(2), e1629, pp. 1–12. Available at: https://doi.org/10.1002/wat2.1629.
  • Foley, E. and Steinman, A.D. (2023) “Urban lake water quality responses to elevated road salt concentrations,” Science of The Total Environment, 905, pp. 1–11. Available at: https://doi.org/10.1016/j.scitotenv.2023.167139.
  • Gliniak, M., Sobczyk, W. and Wielewska, I. (2016) “Przestrzenna zmienność parametrów fizykochemicznych gruntów z terenów silnie zasolonych [Spatial variability of physicochemical parameters of soils from highly saline areas],” Annual Set The Environment Protection, 18, pp. 372–386. Available at: https://www.ros.edu.pl/images/roczniki/2016/023_ROS_V18_R2016.pdf (Accessed: June 12, 2024).
  • Gnida, A. et al. (2016) “The effect of temperature on the efficiency of industrial wastewater nitrification and its (geno)toxicity,” Archives of Environmental Protection, 42(1), pp. 27–34. Available at: http://dx.doi.org/10.1515/aep-2016-0003.
  • Hong, Ch.Ch., Chan, S–K and Shim, H. (2007) “Effect of chloride on biological nutrient removal from wastewater,” Journal of Applied Sciences in Environmental Sanitation, 2(3), pp. 85–92. Available at: https://www.researchgate.net/publication/43993021_Effect_of_chloride_on_biological_nutrient_removal_from_wastewater (Accessed: June 12, 2024).
  • Jovanović, N. et al. (2020) “Modelling the effect of salt from road runoff on nitrification of a wastewater treatment plant,” Water Practice & Technology, 18(4), pp. 922–929. Available at: https://doi.org/10.2166/wpt.2023.059.
  • Jun, L. et al. (2021) “Influence of deicing salt on the surface properties of concrete specimens after 20 years,” Construction and Building Materials, 295, 123643. Available at: https://doi.org/10.1016/j.conbuildmat.2021.123643.
  • Kaczor, G. (2009) “Otwory we włazach kanalizacyjnych jako jedna z przyczyn przedostawania się wód przypadkowych do sieci rozdzielczej [Holes in the sewage canals’ hatches as one of the cause for the accidental water infiltration to the separate sewer system],” Infrastruktura i Ekologia Terenów Wiejskich, 9, pp. 155–163. Available at: http://www.infraeco.pl/pl/art/a_15683.htm?plik=678 (Accessed: June 12, 2024).
  • Kaczor, G. (2011) “Wpływ wiosennych roztopów śniegu na dopływ wód przypadkowych do oczyszczalni ścieków bytowych [Impact of spring snowmelt on inflows to the household sewage treatment plant],” Acta Scientiarum Polonorum Formatio Circumiectus, 10(2), pp. 27–34. Available at: http://actascipol.upwr.edu.pl/pl/action/getfull.php?id=3114 (Accessed: June 12, 2024).
  • Kaczor, G. and Bugajski, P. (2012) “Impact of snowmelt inflow on temperature of sewage discharged to treatment plants,” Polish Journal of Environmental Studies, 21(2), pp. 381–386. Available at: https://www.pjoes.com/pdf-88764-22623?filename=Impact%20of%20Snowmelt%20Inflow.pdf (Accessed: June 12, 2024).
  • Kelly, V.R. et al. (2008) “Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamwater concentration,” Environmental Science and Technology, 42(2), pp. 410–415. Available at: https://doi.org/10.1021/es071391l.
  • Komunikat (2022) “Komunikat 07/2022 interdyscyplinarnego zespołu doradczego ds. kryzysu klimatycznego działającego przy Prezesie PAN na temat katastrofy ekologicznej na Odrze i antropogenicznej zmiany klimatu [Statement no. 07/2022 by the Interdisciplinary Advisory Team for the Climate Crisis to the President of the Polish Academy of Sciences about the disaster on the Odra river and anthropogenic climate changes],” Nauka, 4, pp. 183–187. Available at: https://doi.org/10.24425/nauka.2022.142930.
  • Lancaster, N.A. et al. (2016) “Impact of chloride on denitrification potential in roadside wetlands,” Environmental Pollution, 212, pp. 216–223. Available at: https://doi.org/10.1016/j.envpol.2016.01.068.
  • Mazur, N. (2015) “Wpływ soli do odladzania dróg na środowisko przyrodnicze [Impact of road deicing salt on the natural environment],” Inżynieria i Ochrona Środowiska, 18(4), pp. 449–458. Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-81e06819-425d-42d1-bc56-a19c712c2c95/c/Mazur_Wplyw_4_2015.pdf (Accessed: June 12, 2024).
  • Pernetti, M. and Palma Di, L. (2005) “Experimental evaluation of inhibition effects of saline wastewater on activated sludge,” Environmental Technology, 26(6), pp. 695–704, Available at: http://dx.doi.org/10.1080/09593330.2001.9619509.
  • Rozporządzenie (2019) “Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych [Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and conditions to be met during sewage discharge into the water or into the ground and during rainwater or snowmelt discharge into the water or into the water devices],” Dz.U. 2019, poz. 1311. Available at: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=W-DU20190001311 (Accessed: June 12, 2024).
  • Tauber, J. et al. (2021) “Influence of road salt thawing peaks on the inflow composition and activated sludge properties in municipal wastewater treatment,” Water Science & Technology, 84.2, pp. 314–322. Available at: https://doi.org/10.2166/wst.2021.045.
  • Wałęga, A. and Cupak, A. (2012) “Kinetyka przemian zanieczyszczeń w ściekach opadowych w seminaturalnej oczyszczalni w trakcie procesu infiltracji [Kinetics of pollutant transformations in rainwater in a semi-natural sewage treatment plant during the infiltration process],” Gaz, Woda i Technika Sanitarna, 8, pp. 345–347. Available at: https://sigma-not.pl/publikacja-69933-kinetyka-przemian-zanieczyszcze%C5%84-w-%C5%9Bcie-kach-opadowych-w-seminaturalnej-oczyszczalni-w-trakcie-procesu-infiltracj-gaz-woda-i-technika-sanitarna-2012-8.html (Accessed: June 12, 2024).
  • Wałęga, A. et al. (2014) “Transformation of pollutants in the storm-water treatment process,” Polish Journal of Environmental Studies, 23, 3, pp. 909–916. Available at: https://www.pjoes.com/pdf-89262-23120?filename=Transformation%20of.pdf (Accessed: June 12, 2024).
  • Zdybek, I. (2005) “Wpływ jonów chlorkowych na efektywność biologicznej defosfatacji ścieków [Effect of chloride ions on the efficiency of enhanced biological phosphorus removal from wastewater],” Ochrona Środowiska, 2, pp. 13–17. Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baz-tech-article-BPOB-0005-0009/c/Zdybek.pdf (Accessed: June 12, 2024).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-202a4128-5ed7-4a24-8887-cdd22cb442c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.