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ABSTRACT: In this paper we analyse several ways to compute the weights from the Regularized Han (RH)
algorithm, the regularized version of Han’s algorithm for approximating the least squares solutions of
inconsistent (incompatible) systems of linear inequalities. We tested our approaches on a classical
transportation problem, aiming to provide a cost optimized solution to real world transportation problems,

which often are unbalanced and inconsistent.

1 INTRODUCTION

Many practical problems give rise to systems of linear
inequalities as

AX <b M

in which the inequalities are componentwise, i.e.

2 AX <b,Vi=1,..,m 2)
j=1

where A, is the (i, j) element of AeR™ and
b=(b,)__eR™.

transpose and the Moore-Penrose pseudoinverse of A,

Also, let AT, A* denote the

respectively. <~, > ,

. " will stand for the Euclidean

scalar product and norm.

If (1) is consistent, many classes of efficient solvers,
mostly iterative ones, have been designed for its

numerical solution (see for a good overview the
monograph [3]). In the inconsistent case of (1), for any

x eR" it exists at least one index ie {1,...,m} such

that the i-th inequality in (2) is violated, i.e. the set
I(x)={L,..,m}, defined by

I(x)={ie{1,..,m},(A,x)>b,}| 3)

is non-empty for any X € R". Moreover, let us

suppose that the set I(x) = {i],..., ip} is ordered such

that i, <i, <--~<ip, then, A, ,b .~ will denote the

(x)” 71(x)

submatrix of A with the rows A, ,..,A, and the
1 P
subvector of b with components b, ,..b, ,
1 P
respectively. For any vector yeR™ we define

y, € R™ by (y+ )i =max{yi,0} , and the convex sets

by C ={xeR"(A,x)<b}, i=1..,m The
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inconsistency of the system (1) is equivalent to

m . .
_,C, =0, and we reformulate it in a “least squares
i

sense” as (see e.g. [5]): find x € R" such that
f(x*):min{f(x),xeR“} 4)

with

()= (ax-b)

The following results are proved also in [5].
Proposition 1.

(i) The objective function f from (4) is continuously
differentiable, convex and (see also (3))

F(x)=A"(Ax-b) =Al (AI(X)x—bI(X)) )

(if) There exists (at least) a least squares solution of
D).
(iii) A vector x e€R" of (1) if and only if

f'(x*)=AT(Ax* —b)+ =0 (6)

The paper is organized as follows: in sections 2
and 3 we present Han’s original algorithm for
inconsistent systems of linear inequalities and the
Regularized version of it, respectively. Section 4
presents  the characteristics of a classical
transportation problem and the way it can be
modelled so that the Han-type algorithms can be
applied on. Section 5 is dedicated to the methods we
used for choosing the best weights of the Regularized
Han algorithm, the numerical experiments being done
over an unbalanced and inconsistent transportation
problem.

2 HAN-TYPE ALGORITHM FOR INCONSISTENT
SYSTEMS OF LINEAR INEQUALITIES

S.P. Han proposed in [5] the following iterative
algorithm for approximating a least squares solution
of the system (1):

Algorithm H.
Let x° eR" be an initial datum; for k=0,1,... do:
Step 1. Find I, = I(xk) and compute df, eR" as

the (unique) minimal norm solution of the linear
equalities least squares problem

“AIk d~(b, -A, x*)|=mint @)

Step 2. Compute A* €R as the smallest minimizer
of the function
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0(4)=f(x*+d}), 1eR )

Step 3. Set x*"' =x* +A4d},

The existence of the smaller minimizer for the convex
function from (8) was proved in [5] and a procedure
to find it was given in [1].

Theorem 1.

. Kk
(i) Let (x )kzo
algorithm H from any x" € R". Then, f’(xi) =0, for

be the sequence generated by

a k<o or limf’(xk):O.

k—o
(ii) For any m x n matrix A, any right-hand side
beR™ and any initial datum x’eR", Han's
algorithm H produces a least squares solution of the
system (1) in a finite number of steps (in exact
arithmetic).

3 REGULARIZED HAN (RH) ALGORITHM

The Regularized Han algorithm was introduced in
[10] and thoroughly studied in [9]. In [10] the author
comments on Han’'s algorithm by considering its
major drawback in the fact that, in each iteration,
initial objective function from (4) is replaced by

f(x)=2ffax ),

In this way, many originally satisfied constraints
might be violated in the new iterative solution x“.
Regarding this aspect, he also proposed to use the
complement of the set I, , denoted by ]  and
characterized by

Haon

1 =1 fie 1.m}, A <b] g

together with a diagonal weights matrix

k

k .
qk),wi >0 , where q, is the

W, = diag(wf,...,w
number of elements in the set J,,Vk>0. With these

ideas he designed the Regularized version of Han's
algorithm from below.

Algorithm RH.

Let x° € R" be an initial datum; for k=0,1,... do:
Step 1. Find Ik:I<xk), ]k:](xk) as before and

compute d* eR" the minimal norm solution of the
(regularized) linear least squares problem

Step 2. Compute 4R as the smallest minimizer of
the function

i +“kaJde2 — min! (10)

A, d-(b, A, x")




0(4)=fF(x"+4d"), 1eR (11)

Step 3. Set X' =x* + A*d*.

Theorem 2.

Let x’eR" be arbitrary fixed, and (xk )k>0 the
sequence generated by the algorithm RH. Then, either
it exists k,>0 such that f'(xkO ) =0 , or

limf’(xk)zo.

k—o

4 THE TRANSPORTATION PROBLEM

A classical transportation problem implies finding the
minimum cost of transporting certain quantities of a
single type of commodity from a given number of
loading ports (sources) to a given number of
unloading ports (destinations).

At each source (Si )ie{l,...,n}, supplies (si )i =1,..,n
of some goods are available, and at each destination

(D}.)]E{1 . some demands (dj)jzl,...,m are

Table 1

transportation problem, (cu) (

requested. illustrates the classical

being the

1,..., n} ]E{l/.../m}
costs of shipping one unit of commodity from source
S, to destination D;.

Table 1. The classical transportation problem

D1 D2 Ds ... Dm Supply(s)
S cn c12 c13 ... Cim S1
S2 c21 2 3 ... Cm S2
Sn Cnl Cn2 Cn3 . Cnm Sn
Demand(d) d1 d2 ds . dm

If we denote by x.,i=1..,n,j=1..m the
number of units transported from source S, to
destination D,, we get the following mathematical

model of the (Cla351cal) transportation problem:

minZZcuxu (12)
i=1 j=1
s.t. X; 2 dj, ji=1,..,m *)
i=1
ini =s,i=1..,n **)

Remark 1.

Some arguments for the relations (*)-(**) are as

follows:

— for (¥): at each destination, the demand has to be
“at least” satisfied (e.g. the construction of a

building will not be started if we do not have at
least a minimal amount of materials)
— for (**): all available units must be supplied.

The problem is called balanced if the total supply
Zsi :Zdj ) and
i=1 =1

unbalanced otherwise. In the balanced case or the

equals the total demand (i.e.

unbalanced one with lesi > ledj , the linear program
i= j=

(12) is consistent and well known methods (including

Simplex-type algorithms) are available (see [4]). We

will consider in this paper the unbalanced case

(13)

n m
Z s, < Zdj
i=1 j=1

for which the

inconsistent.

linear program (12) becomes

Let us suppose that there exist 7 sources of

containers S,,...,S, and 7 warehouses D,,..., D, .
We will consider the unbalanced and inconsistent
transportation problem P described in Table 2.

Table 2. The unbalanced transportation problem (P)

Di D2 Ds Dsi Ds Ds D7 Supplys)
Si 3 3 4 12 20 5 9 1050
Sz 7 1 5 3 6 8 4 350
Ss 5 4 7 6 5 12 3 470
Ss 4 5 14 10 9 8 7 600
Ss 8 2 12 9 8 4 2 600
Se 6 1 8 7 2 3 1 480
Sy 9 10 6 8 7 6 5 450

Demand(d) 455 320 540 460 760 830 780

After applying a series of refinements (see [2]), we
can write the problem P as the linear program

min(c,y) st. By>d, y>0 (14)
with the corresponding dual problem given by
max<d,u> st. Blu<c, u=0 (15)

In [2] we also proved a result that gives us the
possibility to express in an equivalent way the primal-
dual pair of linear programs (14-15) as the linear
system of inequalities (1) where

S [0 ]
-B 0 —d
A=l 0 B'|, b=|c (16)
-1 0
| 0 -1 | | 0]

So, instead of solving the linear programs (14- 15),
one could solve the system (1) by applying the Han-
type algorithms.
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5 COMPUTING THE REGULARIZATION
PARAMETERS

The success of Regularized Han algorithm depends

on making a good choice of the weights

k

Lo wz ), wf >0. In the literature, w* are
k

wh = (w
called the regularization parameters. Hence, one
question that can occur related to Regularized Han
algorithm is: how can we compute the regularization
parameters w* so that the RH algorithm preserves
its properties given by Theorem 2? In [10], the author
only remarks that we can impose the appropriate

penalties when x* approaches H}‘ = {j, ijk =b }

j
by assigning a larger weight w* for j-th equation if
the current iterative solution is close to the boundary
H,, and a smaller weight if is far away. Taking these

remarks into consideration, we analysed several ways
for choosing good regularization parameters, our goal
being to compute a good estimate of the solution to 1.
We tested the methods on the inconsistent problem P
described in section 4, knowing that for this problem,
the minimal cost solution is 15336, obtained with Han
algorithm. Both algorithms, H and RH, were
implemented in Matlab R2010a, using the built-in
Matlab function pinv to compute the direction (Step 1
of the algorithms), all runs being started with the

T
initial datum x, =(y;,0) with y,>0 and being
terminated if at the current iterations x, satisfy

“AT (Axt- b)+H AT (Axk - b)+ i.

The first method considered (M1) tries to set each

w}‘,j:l,...,qk according to HA]kxk—b . We can

T
implement it under the

M1
fork=0,1,... do
h* = Akak -b,
forj=1,...,q, do
if ||hk || >10°
then wf =

1
]
else wi=10"
Table 3. The cost solution of problem (P)

Han RH with M1
15336 15981

Next, we took some fixed weights at each step k,

by setting each w;‘, j=1,..,q, equalto “Ajkxk -b,

582

M2
fork=0,1,... do
1
whk=— —— ji=L..q
j K 7 s Yk
HAIkX —b]k

Table 4. The cost solution of problem (P)
Han RH with M1
15336 16257

The third method considered uses fixed weights
for all steps k

M3

k _10-3 .
w; =107,vk,vj=1,..,q

k

Table 5. The cost solution of problem (P)
Han RH with M1
15336 16113

Analysing (10), we observe that we can make an
analogy between the Regularized Han algorithm and
Tikhonov Regularization.

A d-rt [ +|r.df = min! (17)
A d-n [ +Irid]

with 1 =b, —A x* and I, =W,A, . The most
popular method used to find the regularization
parameter of a Tikhonov Regularization is the L-

curve approach. An L-curve is defined by

,log”Ax -b

log|Lx ,a>0
{log] }

and the L-curve method selects the regularization
parameter as the corner of L-curve , i.e. the point of
maximum curvature (see for details [6]).

r

log |l Ax L

v

log ”.‘{_\' » |1

For implementation, we used Hansen’s
Regularization Tools package ([7]) to compute the
corner of L-curve for (10).

M4

fork=0,1,... do
lcorner = 1_curve(U,S,rz’, Tikh',L,V)

w]k =lcorner, Vvj=1,..,q,



where

1 [US V] = csvd( AIk ) where ‘csvd’ stands for
Compact SVD: A =U,SV,/
2 rz= bIk —AIk X"
3 L= IA]k
Table 6. The cost solution of problem (P)
Han RH with M1
15336 24703

After implementing M4 on problem P, we noticed
that an adjustment is need to be made.

M5
fork=0,1,... do
Icorner =1_curve(U,S,rz’, Tikh',L, V)
w}‘ =lcorner, Vj=1,..,q,
if lcorner > 10~ then lcorner =107

k .
w; =lcorner, Vj=1,..,q,

Table 7. The cost solution of problem (P)
Han RH with M1
15336 15336
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