PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Alternative Method for Synthetic Polymers Waste Processing Using the Low Temperature Pyrolysis Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plastics, due to their numerous advantages, are becoming materials more and more widely used in all branches of industry. The number of products, packaging and waste made of synthetic polymers is constantly increasing, which results in a growing threat to the environment due to long time of decomposition of the manufactured products. The future development of plastic recycling methods appears to be a necessary and significant step in materials processing and environmental protection. During the last two decades, a large number of promising research results on the catalytic pyrolysis process of plastics have been reported. This paper presents an alternative method for synthetic polymers waste processing using the low temperature pyrolysis process. The aim of this method is to manage the waste efficiently, but also to reduce the demand for fossil fuels. Commercial fuels and mixtures of these fuels with the pyrolytic oil obtained in low-temperature pyrolytic process were used for the purpose of this study, The following parameters of the obtained fuel mixtures were tested: density, viscosity, flash point, water content, cetane number, cold filter blocking temperature, cloud pint and lubricity, using following equipment: oscillating densitometer, Stabinger viscometer, Pensky-Martens Closed cup tester, apparatus for coulometric determination of water content by Karl-Fischer method, calorimeter. All tests were carried out in accordance with European standards for crude oil and petroleum products. The obtained results are promising and by contribution of the pyrolytic oil additives it is possible to significantly reduce the share of petroleum products used in the fuels production process and contribute to the beneficial management of artificial waste.
Słowa kluczowe
Twórcy
autor
  • Gdynia Maritime University, Faculty of Marine Engineering, ul. Morska 81, 81-225 Gdynia, Poland
  • Gdynia Maritime University, Faculty of Marine Engineering, ul. Morska 81, 81-225 Gdynia, Poland
Bibliografia
  • 1. Krolikowski W. Polimerowe kompozyty konstrukcyjne. Warszawa: PWN, 2012.
  • 2. Kyzioł L., Panasiuk K., Barcikowski M., Hajdukiewicz G. The influence of manufacturing technology on the properties of layered composites with polyester–glass recyclate additive. Progress in Rubber, Plastics and Recycling Technology. 2020; 36(1): 18–30. https://doi.org.pl/10.1177/1477760619895003.
  • 3. Borkowski K. Plastics industry – manufacturing materials for 21st century. Mechanik. 2015; 4: 278 – 282. https://doi.org.pl/10.17814/mechanik.2015.4.158.
  • 4. Godfrey L. Waste Plastic, the Challenge Facing Developing Countries—Ban It, Change It, Collect It? Recycling. 2019; 4: 3. https://doi.org/10.3390/recycling4010003.
  • 5. Gucma M., Bryll K., Gawdzin ́ska K., et al. Technology of single polymer polyester composites and proposals for their recycling. Sci J Marit Univ Szczec. 2015; 44(116): 14–18.
  • 6. Grigore M.E. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers. Recycling. 2017; 2: 24. https://doi.org/10.3390/recycling2040024b.
  • 7. Abdolahi A., Hamzah E., Ibrahim Z., Hashim S. Synthesis of Uniform Polyaniline Nanofibers through Interfacial Polymerization. Materials. 2012; 5: 1487–1494. https://doi.org/10.3390/ma5081487.
  • 8. Guo Q., Ghadiri R., Weigel T., Aumann A., Gurevich E.L., Esen C., Medenbach O., Cheng W., Chichkov B., Ostendorf A. Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers. 2014; 6: 2037–2050. https://doi.org/10.3390/polym6072037.
  • 9. Jansen J.C., Esposito E., Fuoco A., Carta M. Microporous Organic Polymers: Synthesis, Characterization, and Applications. Polymers. 2019; 11: 844.https://doi.org/10.3390/polym11050844.
  • 10. Aldrete-Herrera P.I., López M.G., Medina-Torres L., Ragazzo-Sánchez J.A., Calderón-Santoyo M., González-Ávila M., Ortiz-Basurto R.I. Physico-chemical Composition and Apparent Degree of Polymerization of Fructans in Five Wild Agave Varieties: Potential Industrial Use. Foods. 2019; 8: 404. https://doi.org/10.3390/foods8090404.
  • 11. Browne E., Worku Z.A., Healy A.M. Physicochemical Properties of Poly-vinyl Polymers and Their Influence on Ketoprofen Amorphous Solid Dispersion Performance: A Polymer Selection Case Study. Pharmaceutics. 2020; 12: 433. https://doi.org/10.3390/pharmaceutics12050433.
  • 12. Shuai C., Shuai C., Feng P., Gao C., Peng S., Yang Y. Antibacterial Capability, Physicochemical Properties, and Biocompatibility of nTiO2 Incorporated Polymeric Scaffolds. Polymers. 2018; 10: 328. https://doi.org/10.3390/polym10030328.
  • 13. Panasiuk K., Hajdukiewicz G. Production of composites with added waste polyester-glass with their initial mechanical properties. Sci J Marit Univ Szczec. 2017; 52(124): 30–36.
  • 14. Stelmach S. Waste pyrolysis as an element of the circular economy [in Polish: Piroliza odpadów jako element gospodarki o obiegu zamkniętym]. Wydawnictwo Politechniki Śląskiej, Zabrze, 2012.
  • 15. Chodkowski J. et al. Mały Słownik Chemiczny. Wyd. III, Wiedza Powszechna, Warszawa; 1971.
  • 16. Paethanom A., Yoshikawa K. Influence of Pyrolysis Temperature on Rice Husk Char Characteristics and Its Tar Adsorption Capability. Energies. 2012; 5: 4941–4951. https://doi.org/10.3390/en5124941.
  • 17. Wan Mahari W.A., Zainuddin N.F., Wan Nik W.M.N., Chong C.T., Lam S.S. Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating. 2016; 9: 780. https://doi.org/10.3390/en9100780.
  • 18. Li G., Luo Z., Wang W., Cen J. A Study of the Mechanisms of Guaiacol Pyrolysis Based on Free Radicals Detection Technology. Catalysts. 2020; 10: 295. https://doi.org/10.3390/catal10030295.
  • 19. Jaworski T.J., Grochowska S. Closed Circuit Economy - criteria for achievement and implementation perspective in Poland. [in Polish: Gospodarka Obiegu Zamkniętego – kryteria osiągnięcia i perspektywa wdrożenia w Polsce]. Archiwum Gospodarki Odpadami i Ochrony środowiska. 2017; 19(4): 13–22.
  • 20. Aho A., Kumar N., Eränen K., Holmbom B., Hupa M., Salmi T., Murzin D.Y. Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor. Int. J. Mol. Sci. 2008; 9: 1665–1675. https://doi.org/10.3390/ijms9091665
  • 21. Quan C., Li A., Gao N., Dan Z. Characterization of products recycling from PCB waste pyrolysis. Journal of Analytical and Applied Pyrolysis. 2010; 89(1): 102–106. https://doi.org/10.1016/j. jaap.2010.06.002.
  • 22. Anene A.F., Fredriksen S.B., Sætre K.A., Tokheim L.-A. Experimental Study of Thermal and Catalytic Pyrolysis of Plastic Waste Components. Sustainability. 2018; 10: 3979. https://doi.org/10.3390/su10113979
  • 23. Aboughaly M., Gabbar H.A., Damideh V., Hassen I. RF-ICP Thermal Plasma for Thermoplastic Waste Pyrolysis Process with High Conversion Yield and Tar Elimination. Processes. 2020; 8: 281. https://doi.org/10.3390/pr8030281
  • 24. Nadziakiewicz J., Wacławiak K., Stelmach S. Thermal waste utilization processes [in Polish: Procesy termiczne utylizacji odpadów]. Wydawnictwo Politechniki Śląskiej, Gliwice 2007.
  • 25. Karayildirim T., Yanik J., Yuksel M., BockhornH. Characterisation of products from pyrolysis of waste sludges. Fuel. 2006; 85(10–11), 1498–1508. https://doi.org/10.1016/j.fuel.2005.12.002.
  • 26. AlDayyat E.A., Saidan M.N., Al-Hamamre Z., Al-Addous M., Alkasrawi M. Pyrolysis of Solid Waste for Bio-Oil and Char Production in Refugees’ Camp: A Case Study. Energies. 2021; 14: 3861. https://doi.org/10.3390/en14133861.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2020f35c-7902-4184-ab49-3e65de01891f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.