PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concentric magnetic gear structure review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd struktury koncentrycznego przekładni magnetycznej
Języki publikacji
EN
Abstrakty
EN
The paper presents the evolvement of magnetic gear structure from its inception up to the year of 2023. The output performances (power and torque) of all the structure will be tabled and analyzed in this paper. Among several structures researched in MG, Concentric Magnetic Gear (CMG), is the most researched structure due to its high utilization of the magnetic field compared to other structure. Since many structure evolved from CMG, a classification tree derived from CMG is presented. The classification tree provides an overview of the state of the art in CMG design.
PL
W artykule przedstawiono ewolucję konstrukcji przekładni magnetycznej od jej powstania do roku 2023. W artykule zostaną zestawione i przeanalizowane parametry wyjściowe (moc i moment obrotowy) wszystkich konstrukcji. Spośród kilku struktur badanych w MG, koncentryczna przekładnia magnetyczna (CMG) jest najczęściej badaną strukturą ze względu na wysokie wykorzystanie pola magnetycznego w porównaniu z innymi strukturami. Ponieważ wiele struktur wyewoluowało z CMG, przedstawiono drzewo klasyfikacyjne wywodzące się z CMG. Drzewo klasyfikacyjne zawiera przegląd stanu techniki w projektowaniu CMG.
Rocznik
Strony
140--147
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
  • Fakulti Teknologi Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka Malaysia
  • Fakulti Teknologi Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka Malaysia
  • Fakulti Kejuruteraan Elektrik dan Elektronik, Universiti Tun Hussein Onn Malaysia 86400 Parit Raja, Johor Malaysia
Bibliografia
  • [1] M. F. Mohd Ab Halim, “Hybrid-Excited Magnetic Gear Employing Rotating-Pole-Piece Topology With Improved Gear Efficiency For Electric Vehicle Application,” University Tun Hussein Onn, 2022.
  • [2] Z. Li and K. Mao, “Frictional effects on gear tooth contact analysis,” Adv. Tribol., vol. 2013, pp. 1–8, 2013, doi: 10.1155/2013/181048.
  • [3] B. Mcgilton, P. M. Mueller, and A. Mcdonald, “Review of Magnetic Gear Technologies and their Applications in Marine Energy,” in IET International Conference on Renewable Power Generation (RPG), Sep. 2016, pp. 1–6, doi: 10.1049/cp.2016.0535.
  • [4] J. J. Scheidler, V. M. Asnani, and T. F. Tallerico, “NASA’s Magnetic Gearing Research for Electrified Aircraft Propulsion,” in IEEE Electric Aircraft Technologies Symposium, 2018, pp. 1–12, doi: 10.2514/6.2018-4988.
  • [5] J. L. Perez-Diaz, E. Diez-Jimenez, M. A. Alvarez-Valenzuela, J. Sanchez-García-Casarrubios, C. Cristache, and I. Valiente- Blanco, “Magnetic Gearboxes for Aerospace Applications,” in Aerospace Mechanism Symposium, May 2014, pp. 365–374, doi: https://ntrs.nasa.gov/search.jsp?R=20150004073.
  • [6] K. Li, Z. Zhu, and P. Wu, “A Reluctance Magnetic Gear for High Speed and Vibration Motor Systems,” in International Conference on Mechatronics and Machine Vision in Practice, M2VIP, 2018, pp. 1–5, doi: 10.1109/M2VIP.2018.8600905.
  • [7] Z. A. Cameron, T. T. Tallerico, and J. J. Scheidler, “Lessons Learned in Fabrication of a High-Specific-Torque Concentric Magnetic Gear,” 2019.
  • [8] C. G. C. Neves, D. L. Figueiredo, and A. S. Nunes, “Magnetic Gear : A Review,” in IEEE/IAS International Conference on Industry Applications, 2014, pp. 1–6, doi: 10.1109/INDUSCON.2014.7059417.
  • [9] A. Al Faysal and S. M. Haris, “Development of Magnetic Gears : A Review,” J. Kejuruter., vol. 1, no. 7, pp. 49–56, 2019.
  • [10] T. B. Martin, “Magnetic Transmission,” 3378710, 1968.
  • [11] S. Rand, “Magnetic transmission system,” US3523204A, 1970.
  • [12] F. T. Jorgensen, T. O. Andersen, and P. O. Rasmussen, “Two dimensional model of a permanent magnet spur gear - A mathematical method used to model a parallel magnetised magnetic spur gear,” in IAS Annual Meeting. Conference Record of the Industry Applications Conference, 2005, pp. 261–265.
  • [13] K. Ikuta, S. Makita, and S. Arimoto, “Non-contact magnetic gear for micro transmission mechanism,” in Proceedings. IEEE Micro Electro Mechanical Systems, 1991, pp. 125–130.
  • [14] S. Kikuchi and K. Tsurumoto, “Design and characteristics of a new magnetic worm gear using permanent magnet,” IEEE Trans. Magn., vol. 29, no. 6, pp. 2923–2925, 1993.
  • [15] P. O. Rasmussen, T. O. Andersen, F. T. Jørgensen, and O. Nielsen, “Development of a High-Performance Magnetic Gear,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 764–770, 2005.
  • [16] D. E. Hesmondhalgh and D. Tipping, “A multielement magnetic gear,” IEE Proc. B Electr. Power Appl., vol. 127, no. 3, pp. 129– 138, 1980, doi: 10.1049/ip-b.1980.0017.
  • [17] E. P. Furlani, “A Two-Dimensional Analysis for the Coupling of Magnetic Gears,” IEEE Trans. Magn., vol. 33, no. 3, pp. 2317– 2321, 1997, doi: 10.1109/20.573848.
  • [18] D. Howe and K. Attalah, “A novel high-performance linear magnetic gear,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2844– 2846, 2001, doi: 10.1541/ieejias.126.1352.
  • [19] K. Atallah, S. D. Calverley, and D. Howe, “High-performance magnetic gears,” J. Magn. Magn. Mater., vol. 272–276, no. SUPPL. 1, pp. 1727–1729, 2004, doi: 10.1016/j.jmmm.2003.12.520.
  • [20] K. Atallah, S. D. Calverley, and D. Howe, “Design, analysis and realisation of a high- performance magnetic gear,” IEE Proceedings-Electric Power Appl., vol. 150, no. 2, pp. 139–145, 2004, doi: 10.1049/ip-epa.
  • [21] J. Rens, K. Atallah, S. D. Calverley, and D. Howe, “A novel magnetic harmonic gear,” Proc. IEEE Int. Electr. Mach. Drives Conf., vol. 1, pp. 698–703, 2007, doi: 10.1109/IEMDC.2007.382752.
  • [22] C. C. Huang, M. C. Tsai, D. G. Dorrell, and B. J. Lin, “Development of a magnetic planetary gearbox,” IEEE Trans. Magn., vol. 44, no. 3, pp. 403–412, 2008, doi: 10.1109/TMAG.2007.914665.
  • [23] L. Xianglin, C. K. T., C. Ming, H. Wei, and D. Yi, “A New Coaxial Magnetic Gear Using Stationary Permanent Magnet Ring,” in International Conference on Electrical Machines and Systems, 2013, pp. 634–638, doi: 10.1109/ICEMS.2013.6754484.
  • [24] H. Li, T. Dai, M. Lu, B. Yuan, and Y. Yin, “Steady-state Analysis of Cycloidal Magnetic Gear Based on Equivalent Motion Modes,” in International Electrical and Energy Conference (CIEEC), 2021, pp. 1–6.
  • [25] H. Huang, R. Qu, and J. Bird, “Performance of Halbach Cycloidal Magnetic Gears with Respect to Torque Density and Gear Ratio,” in International Electric Machines & Drives Conference (IEMDC), 2019, pp. 1977–1984.
  • [26] M. Tsai and L. Ku, “3D printing based design of axial flux magnetic gear for high torque density,” 2015.
  • [27] S. A. Afsari, H. Heydari, and B. Dianati, “Cogging torque mitigation in axial flux magnetic gear system based on skew effects using an improved quasi 3-D analytical method,” IEEE Trans. Magn., vol. 51, no. 9, pp. 1–11, 2015.
  • [28] S. Peng, W. N. Fu, and S. L. Ho, “A novel triple-permanentmagnet- excited hybrid-flux magnetic gear and its design method using 3-D finite element method,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1–4, 2014.
  • [29] S. Mezani, K. Atallah, and D. Howe, “A high-performance axialfield magnetic gear,” J. Appl. Phys., no. 99, pp. 8–10, 2006, doi: 10.1063/1.2158966.
  • [30] J. Sepaseh, N. Rostami, M. R. Feyzi, M. Bagher, and B. Sharifian, “Optimal design of an axial magnetic gear by using particle swarm optimisation method,” Electr. Power Appl., vol. 16, no. 6, pp. 635–748, 2022, doi: 10.1049/elp2.12189.
  • [31] M. B. Kouhshahi, V. M. Acharya, M. Calvin, and J. Z. Bird, “Designing and experimentally testing a flux- focusing axial flux magnetic gear for an ocean generator application,” IET Electr. Power Appl., vol. 13, no. 8, pp. 1212–1218, 2019, doi: 10.1049/iet-epa.2018.5931.
  • [32] K. Li and J. Z. Bird, “A Review of the Volumetric Torque Density of Rotary Magnetic Gear Designs,” in International Conference on Electrical Machines (ICEM), 2018, pp. 2016– 2022.
  • [33] P. Transmission, “A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission,” Energies, vol. 16, no. 4, p. 1721, 2023.
  • [34] Y. Chen, W. N. Fu, S. L. Ho, and H. Liu, “A Quantitative Comparison Analysis of Radial-Flux, Transverse-Flux, and Axial-Flux Magnetic Gears,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1–4, 2014.
  • [35] W. Bomela, J. Z. Bird, and V. M. Acharya, “The performance of a transverse flux magnetic gear,” IEEE Trans. Magn., vol. 50, no. 1, pp. 1–4, 2014.
  • [36] X. Li, S. Liu, Y. Wang, and Y. Fan, “Investigation of the flux leakage effects in transverse-flux magnetic gear,” in International Conference on Electrical Machines and Systems (ICEMS), 2017, pp. 1–5.
  • [37] R. C. Holehouse, K. Atallah, and J. Wang, “Design and Realization of a Linear Magnetic Gear,” IEEE Trans. Magn., vol. 47, no. 10, pp. 4171–4174, 2011.
  • [38] R. Norton, Design of Machinery. McGraw-Hill, 2011.
  • [39] C. Daniel and P. Rodrigues, “Design of a high-speed transmission for an electric vehicle,” Universidade do Porto: Master’s Thesis, 2018.
  • [40] J. Zhang, “Design and Analysis of a Two-Stage Transmission Magnetic-Geared Machine,” IEEJ Trans. Electr. Electron. Eng., 2019, doi: 10.1002/tee.23037.
  • [41] L. Jing, W. Liu, W. Tang, and R. Qu, “Design and Optimization of Coaxial Magnetic Gear With Double-Layer PMs and Spoke Structure for Tidal Power Generation,” IEEE/ASME Trans. Mechatronics, vol. PP, pp. 1–9, 2023, doi: 10.1109/TMECH.2023.3261987.
  • [42] A. A. Aoba-ku, “Performance Improvement of Spoke Shaped Interior Permanent Magnet Magnetic Gear,” J. Magn. Soc. Japan, vol. 45, no. 3, pp. 50–55, 2021.
  • [43] Y. Wu and C. Wang, “Transmitted Torque Analysis of a Magnetic Gear Mechanism with Rectangular Magnets,” Appl. Math. Inf. Sci., vol. 1065, no. 2, pp. 1059–1065, 2015.
  • [44] A. Al-qarni and F. Wu, “High-Torque-Density Low-Cost Magnetic Gear Utilizing Hybrid Magnets and Advanced Materials,” in IEEE International Electric Machines & Drives Conference (IEMDC), 2019, pp. 225–232.
  • [45] M. A. Rahimi, M. Durali, and M. Asghari, “A design approach to coaxial magnetic gear and determination of torque capability,” Sci. Iran. B, vol. 25, pp. 772–789, 2018, doi: 10.24200/sci.2017.4326.
  • [46] A. I. Selvakumar, S. P. Sathiyan, and S. L. G, “Minimization of Torque Ripple in Induction Motor Drive by Optimal Harmonic Elimination,” Przegląd Elektrotechniczny, no. 4, pp. 36–39, 2022, doi: 10.15199/48.2022.04.08.
  • [47] M. Filippini, “Coaxial Magnetic Gear Design and Optimization,” IEEE Trans. Ind. Electron., vol. 64, no. 12, pp. 9934–9942, 2017.
  • [48] Y. Wang, M. Filippini, G. Bacco, and N. Bianchi, “Parametric Design and Optimization of Magnetic Gears with Differential Evolution Method,” IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 3445–3452, 2019, doi: 10.1109/TIA.2019.2901774.
  • [49] M. Desvaux, B. Multon, S. Sire, and H. Ben Ahmed, “Analytical iron loss model for the optimization of magnetic gear,” 2017.
  • [50] X. Zhang, X. Liu, C. Wang, and Z. Chen, “Analysis and Design Optimization of a Coaxial Surface-Mounted Permanent-Magnet Magnetic Gear,” Energies, vol. 7, pp. 8535–8553, 2014, doi: 10.3390/en7128535.
  • [51] H. M.F.M.A., E. Sulaiman, R. Aziz, R. N. F. K. R. Othman, and R. A.A., “Torque Density Design Optimization of Rotating Pole Piece Concentric Magnetic Gear,” Arab. J. Sci. Eng., vol. 47, 2021, doi: https://doi.org/10.1007/s13369-021-05812-3.
  • [52] X. Zhu, Z. Shu, L. Quan, Z. Xiang, and X. Pan, “Multi-Objective Optimization of an Outer-Rotor V-Shaped Permanent Magnet Flux Switching Motor Based on Multi-Level Design Method,” IEEE Trans. Magn., vol. 52, no. 10, pp. 1–8, 2016, doi: 10.1109/TMAG.2016.2581767.
  • [53] M. F. Omar, “Design of Segmental Rotor and Nonoverlap Windings in Single-Phase FEFSM for Low Torque High Speed Applications,” Universiti Tun Hussein Onn Malaysia: Ph.D. Thesis, 2019.
  • [54] K. T. Chau, D. Zhang, J. Z. Jiang, C. Liu, and Y. Zhang, “Design of a Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor for Electric Vehicles,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2504–2506, 2007.
  • [55] L. L. Wang, J. X. Shen, Y. Wang, and K. Wang, “A Novel Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor,” in Proceedings of the IET International Conference on Power Electronics and Drives, Apr. 2008, pp. 33–36.
  • [56] N. Niguchi and K. Hirata, “Cogging torque characteristics of magnetic-geared motor,” Int. J. Comput. Math. Electr. Electron. Eng., vol. 31, no. 5, pp. 1470–1481, Jul. 2012, doi: 10.1108/03321641211248219.
  • [57] K. Li, J. Bird, J. Kadel, and W. Williams, “A Flux-Focusing Cycloidal Magnetic Gearbox,” IEEE Trans. Magn., vol. 51, no. 11, pp. 30–33, 2015, doi: 10.1109/TMAG.2015.2440218.
  • [58] X. Li, M. Cheng, and Y. Wang, “Analysis, design and experimental verification of a coaxial magnetic gear using stationary permanent-magnet ring,” IET Electr. Power Appl., vol. 12, no. 2, pp. 231–238, 2018, doi: 10.1049/ietepa. 2017.0382.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2020d3ab-8bc8-4cf7-834f-cac2b240f950
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.