PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Causes of Water Erosion and Benefits of Antierosion Measures in Model Locality Starovice – Hustopeče (South Moravia Region, Czech Republic)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The agricultural land found in the Czech Republic is strongly degraded by water erosion. The main reasons for this situation are the changes in the landscape caused by large-area agricultural production in the second half of the 20th century. In the model locality Starovice – Hustopeče (223.5 ha) (South Moravia Region), we analysed the changes in the landscape structure and land use for the period 1825-2018. In 1825, the mean size of a land block was 0.4 ha. In 1968, the studied locality consisted of just one land block of a size of 223.5 ha. This period marks the beginning of massive water erosion. In 2003, the locality was proposed for land consolidation. Its goal was to reduce erosion and the risk of floods. To date, a number of protective measures have been applied in the locality. The risk of water erosion was assessed for the landscape state in 1968 and 2018 in GIS using the USLE method. The effect of the adopted measures was strongly manifested in the reduction of the erosion risk (by 44%). The transport of sediment out of the locality was assessed for 1968 and 2018 by means of the WaTEM-SEDEM model. The protective measures resulted in a decrease of sediment transport out of the locality by 111 t/year (40% reduction). The economic balance of the soil loss showed a positive impact of the applied protective measures. On the basis of the mean price of arable land in the Czech Republic and the costs of the soil relocation within the locality, the application of protective measures brought an economy of at least € 5,000 per year. This sum does not include the losses caused by a potential decrease of agricultural crop yields due to the soil degradation, reduction of ecosystem services, and other factors in the past years. The actual benefits of applying the protective measures aimed at reducing erosion and increasing water retention in the landscape are significantly higher.
Rocznik
Strony
95--105
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Research Institute for Soil and Water Conservation, v.v.i., Department of Land Consolidations and Landscape Use, Lidická 25/27, 602 00 Brno, Czech Republic
  • Research Institute for Soil and Water Conservation, v.v.i., Department of Land Consolidations and Landscape Use, Lidická 25/27, 602 00 Brno, Czech Republic
autor
  • Faculty of AgriSciences, Mendel University in Brno, Department of Applied and Landscape Ecology, Zemědělská 1, 613 00 Brno, Czech Republic
  • Research Institute for Soil and Water Conservation, v.v.i., Department of Land Consolidations and Landscape Use, Lidická 25/27, 602 00 Brno, Czech Republic
  • Research Institute for Soil and Water Conservation, v.v.i., Department of Land Consolidations and Landscape Use, Lidická 25/27, 602 00 Brno, Czech Republic
Bibliografia
  • 1. Dostál T., Janeček M., Kliment Z., Krása J., Langhammer J., Váška J., Vrána K. 2006. In Boardman J., Poesen J. (eds.) Soil erosion in Europe. Chichester: John Wiley & Sons Ltd., 107–116.
  • 2. Hartvigsen, M. 2014. Land mobility in Central and Eastern Europe land consolidation context. Nordic Journal of Surveying and Real Estate Research, 10(1), 23–46.
  • 3. Holý, M. 1994. Erosion and the Environment. Czech Technical Institute, Prague.
  • 4. Holý, M. 1978. Antierosive Protection. National Publishing House for Technical Literature, Prague.
  • 5. Janeček, M. et al. 2012. Protection of agricultural land against erosion. Methodology. Prague: Powerprint, s.r.o. (in Czech).
  • 6. Kadlec, M., Toman, F. 2002. Correlation between the antierosive factor effectiveness of vegetation cover C and the climatic region. In: Bioclimate – Environment – Management.
  • 7. Karásek, P., Podhrázská, J., Konečná, J., Kučera, J., Pochop, M. 2018. Priority Areas for Initiating Land Consolidations Related to Erosion and Water Retention in the Landscape, Czech Republic. Journal of Ecological Engineering, 19(4): 16–28.
  • 8. Konečná, J., Pražan, J. et. al. 2014. Assessment of economic aspects of erosion control of agricultural land. Certified methodology. Research Institute for Soil and Water Conservation, v.v.i. (in Czech).
  • 9. Krása J., Dostál T., Rosendorf P.,Borovec J., Hejzlar J. (2015). Modelling of sediment and phosphorus loads in reservoirs in the CR. In Fullen M.A et al (eds.) Innovative strategies and policies for soil conservation. Catena, Advances in Geoecology 44, 21–34.
  • 10. Lal, R. 2001. Soil Degradation by Erosion. Land Degradation and Development, 12: 519–539.
  • 11. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., Mcnair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., Blair, R. 1995. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science, 267(5201): 1117–1123.
  • 12. Podhrázská, J., Kučera, J., Karásek, P., Konečná, J. 2015. Land degradation by erosion and its economic consequences for the region of South Moravia (Czech Republic). Soil and Water Research, 10(2), 105–113.
  • 13. Stejskalová, D., Karásek, P., Tlapáková, L., Podhrázská, J. (2013). Landscape metrics as a tool for evaluation of landscape structure, a case study of Hubenov region, Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LXI(1): 193–203.
  • 14. Szturc, J., Karásek, P., Podhrázská, J. 2017: Historical changes in the land use connected with appropriation of agricultural land – case study of cadastral area Dolní Věstonice and Modřice (Czech Republic). European Countryside, 9(4):658–678.
  • 15. Thomas, J. 2006. Property rights, land fragmentation and the emerging structure of agriculture in Central and Eastern European countries. Journal of Agricultural and Development Economics, 3(2): 225–275.
  • 16. Van Oost, K., Govers, G. 2004. Usle2D. Katholieke Universiteit Leuven. [online] [cit. 2018–05–13]. Accessible at: http://www.kuleuven.be/geography/frg/modelling/erosion/usle2dhome/index.htm
  • 17. Van Rompaey A., Krasa J., Dostal T. (2007). Modelling the impact of land cover changes in the Czech Republic on sediment delivery. Land Use Policy, 24(3), 576–583.
  • 18. VOPRAVIL, J. et al. 2011. Assessment of Land Erodability Factor in the Czech Republic. Vodní hospodářství, 6: 249–255.
  • 19. Walling E.D. 2009. The impact of global change on erosion and sediment transport by rivers: current progress and future challenges. Paris: UNESCO. Available at http://unesdoc.unesco.org/images/0018/001850/185078E.pdf (Accessed Jan 2018).
  • 20. WaTEM/SEDEM 2006. Available at http://geo.kuleuven.be/geography/modelling/erosion/watemsedem/index.htm (Accessed June 2018).
  • 21. Wischmeier, W.H., Smith, D.D. 1978. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning. The USDA Agricultural Handbook No. 537, Maryland.
  • 22. Zdražil, K. 1965. Economic evaluation of antierosive protection. Institute of Scientific and Technical Information of the Ministry of Agriculture, Forestry and Water management of CSSR, Prague.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-201fd06f-33ef-4f14-a9b2-1aeae927db6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.