PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości fizykomechaniczne zapraw geopolimerowych z metahaloizytu

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Physical and mechanical properties of meta-halloysite-based geopolymer mortars
Języki publikacji
PL EN
Abstrakty
PL
Geopolimery to amorficzne materiały powstałe w wyniku reakcji polimeryzacji pomiędzy prekursorem glinokrzemianowym i odczynnikiem alkalicznym lub przez aktywację kwasem fosforowym. Surowcem glinokrzemianowym stosowanym do wytwarzania geopolimerów mogą być odpady przemysłowe takie jak popiół lotny lub wulkaniczny, żużel wielkopiecowy lub uzyskiwany z surowców naturalnych metakaolinit, metahaloizyt. Celem pracy było dobranie składu aktywatora do wytwarzania z metahaloizytu geopolimeru o optymalnych właściwościach fizykomechanicznych takich jak gęstość właściwa i objętościowa, porowatość, nasiąkliwość wagowa i objętościowa oraz wytrzymałość na zginanie i ściskanie. Do ustalenia składu aktywatora alkalicznego do zapraw geopolimerowych zastosowano dwuczynnikowy plan eksperymentu, przyjmując jako zmienne stężenie molowe roztworu wodorotlenku sodu oraz stosunek szkła wodnego sodowego do roztworu NaOH. Wyniki badań wykazały, że zwiększenie ilości szkła wodnego sodowego w stosunku do masy roztworu 12M NaOH w roztworze aktywatora poprawia wytrzymałość na ściskanie zapraw geopolimerowych o 36,8% , natomiast przy zginaniu uzyskano zwiększenie wytrzymałości o 14,2%. Porowatość zapraw geopolimerowych zmniejsza się wraz ze zwiększeniem stężenia molowego wodorotlenku sodu w roztworze aktywatora od 19,0 do 24,5%. Wraz ze zmniejszeniem stosunku szkła wodnego sodowego do zawartości wodorotlenku sodu oraz zmniejszeniem stężenia molowego NaOH zwiększa się nasiąkliwość wagowa oraz objętościowa zapraw. Ustalenie optymalnego składu geopolimeru z metahaloizytu ze względu na właściwości użytkowe i trwałość wymaga dalszych badań.
EN
Geopolymers are amorphous materials produced by the polymerisation reaction between an aluminosilicate precursor and an alkaline reagent or by activation with phosphoric acid. The aluminosilicate raw material used in the manufacture of geopolymers can be industrial waste, such as fly ash or volcanic ash, blast furnace slag, or it can be obtained from natural raw materials, such as metakaolin and meta-halloysite. The work aimed to select the composition of an activator for the production of meta-halloysite geopolymers with optimum physico-mechanical properties such as specific and bulk density, porosity, weight, and bulk absorption, as well as flexural and compressive strength. A two-factor experimental design was employed to determine the composition of the alkaline activator for geopolymer mortars, with sodium hydroxide solution molar concentration and sodium silicate to NaOH ratio as variables. Research has shown that increasing the amount of sodium silicate relative to the mass of a 12M NaOH solution in the activator solution improves the compressive strength of geopolymers by 36.8%, while an increase in flexural strength of 14.2% was achieved. As the molar concentration of caustic soda in the activator solution increases from 19.0 to 24.5%, the porosity of geopolymer mortars decreases. The reduction in the ratio of water glass to sodium hydroxide and the reduction in the molar concentration of NaOH increases the mass and volume water absorption of the mortar. Further studies is necessary to determine the optimal mixture of metahalloysite geopolymer, taking into account its functional properties and durability.
Czasopismo
Rocznik
Strony
351--361
Opis fizyczny
Bibliogr. 35 poz., il., tab.
Twórcy
  • Kielce University of Technology, Kielce, Poland
  • Kielce University of Technology, Kielce, Poland
Bibliografia
  • 1. K. Goryunova, Y. Gahramanli, V. Muradkhanli, P. Nadirov, Phosphate-activated geopolymers: advantages and application. RCS Adv. 13, 30329 (2023) https://doi.org/10.1039/d3ra05131e
  • 2. A. Stefańska, M. Łach, J. Mikuła, Geopolimery jako przykład zagospodarowania odpadów, w: Danielewska, A. Maciąg, M. (red), Nowoczesne technologie XXI w. - przegląd, trendy i badania, Wydawnictwo Naukowe Tygiel, Lublin, s. 24-34, 2019.
  • 3. S. Grzeszczyk, The truth about the geopolymers. Cem. Wapno Beton 26(2), 101-108 (2021). https://doi.org/10.32047/CWB.2021.26.2.7
  • 4. K. Brudny, M. Łach, A. Bąk, K. Pławecka, K. Korniejenko, Application of diatomite as a substitute for flay ash in foamed geopolymers. J. Phys. Conf. Ser. 2423, 012028 (2023). https://doi:10.1088/1742-6596/2423/1/012028
  • 5. Z.H. Zhang, H.J. Zhu, C.H. Zhoua, H. Wang, Geopolymer from kaolin in China: An overview. Appl. Clay Sci. 119, 31-41 (2016). https://doi.org/10.1016/j.clay.2015.04.023
  • 6. P. Cong, Y. Cheng, Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. 8(3), 283-314 (2021). https://doi.org/10.1016/j.jtte.2021.03.004
  • 7. K. Komnitsas, D. Zaharaki, Geopolymerisation: a review and prospects for the minerals industry. Miner. Eng. 20, 1261-1277 (2007). https://doi.org/10.1016/j.mineng.2007.07.011
  • 8. M. Król, T.Z. Błaszczyński, Geopolimery w budownictwie, Izolacje. 5, 38-43 (2013).
  • 9. S. Sikora, K. Skowera, M. Hynowski, Z. Rusin, Formation of geopolymeric materials properties depending on the molar modules of SiO2/Al2O3 and SiO2/Na2O, Cem. Wapno Beton 27(2), 115-125 (2022). https://doi.org/10.32047/cwb.2022.27.2.3
  • 10. K. Rajczyk, G. Janus, Microstructure and properties of geopolymers formed in the alkali activation process of fly ash. Cem. Wapno Beton 26(4), 279-293 (2021). https://doi.org/10.32047/cwb.2021.26.4.2
  • 11. P. Czapik, P. Szczur, Influence of cement by-pass dust on the properties of multi-component binders with granulated blast furnace slag. XII Konferencja Dni Betonu, s.679-705, Wisła 2023.
  • 12. K.T. Nguyen, Y. H. Lee, J. Lee, N. Ahn, Acid Resistance and Curing Properties for Green Fly Ash-geopolymer Concrete, Acid Resistance and Curing Properties for Green Fly Ash-geopolymer Concrete. J. Asian Arch. Build. Eng. 12(2) 317-322 (2013). https://doi.org/10.3130/jaabe.12.317
  • 13. J. Kwasny, T.A. Aiken, M.N. Soutsos, J.A. McIntosh, D.J. Cleland, Sulfate and acid resistance of lithomarge-based geopolymer mortars. Constr. Build. Mater. 166, 537-553 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.129
  • 14. M.A.M. Ariffin, M.A.R. Bhutta, M.W. Hussin, M. Mohd Tahir, Nor Aziah, Sulfuric acid resistance of blended ash geopolymer concrete. Constr. Build. Mater. 43, 80-86 (2013). https://doi.org/10.1016/j.conbuildmat.2013.01.018
  • 15. J.G.S. Van Jaarsveld, J.S.J. Van Deventer, A. Schwartzman, The potential use of geopolymer materials to immobolise toxic metals: Part II. Material and leaching characteristics. Miner Eng. 12(1), 75-91 (1999). https://doi.org/10.1016/S0892-6875(98)00121-6
  • 16. M. Król, T. Błaszczyński, Ekobetony geopolimerowe. Materiały Budowlane. 495, 23-26 (2013).
  • 17. N. Ranjbar, S. Talebian., M. Mehrali, C. Künzel, Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 122, 73-81 (2016). https://doi.org/10.1016/j.compscitech.2015.11.009
  • 18. M. Sitarz, Kształtowanie podstawowych właściwości zapraw geopolimerowych z krzemionkowych popiołów lotnych, Praca doktorska. Politechnika Krakowska, Kraków, 2022.
  • 19. B. Zhang, H. Guo, P. Yuan, Y. Li, Q. Wang, L. Deng, D. Liu, Geopolymerization of halloysite via alkali-activation: Dependence of microstructures on precalcination. Appl. Clay Sci. 185, 105375 (2020). https://doi.org/10.1016/j.clay.2019.105375
  • 20. C. R. Kazea, T. Alomayrib, A. Hasanc, S. Tomed, G. L. Lecomte-Nanaf, J. Giogetti Deutou Nemaleue, H. K. Tchakoutea, E. Kamseue, U. C. Meloa, H. Rahierg, Reaction kinetics and rheological behaviour of meta-halloysite based geopolymer cured at room temperature: Effect of thermal activation on physicochemical and microstructural properties. Appl. Clay Sci. 196, 105773 (2020). https://doi.org/10.1016/j.clay.2020.105773
  • 21. C. R. Kaze, S. B. K. Jiofack, Ö. Cengiz, T. S. Alomayri, A. Adesina, H. Rahier, Reactivity and mechanical performance of geopolymer binders from metakaolin/meta-halloysite blends. Constr. Build. Mater. 336, 127546 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127546
  • 22. B. Zhang, P. Yuan, H. Guo, L. Deng, Y. Li, L. Li, Q. Wang, D. Liu, Effect of curing conditions on the microstructure and mechanical performance of geopolymers derived from nanosized tubular halloysite. Constr. Build. Mater. 268, 121186 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121186
  • 23. C. R. Kaze, A. Nana, G. L. Lecomte-Nana, J. G. N. Deutou, E. Kamseu, U. Ch. Melo, F. Andreola, C. Leonelli, Thermal behaviour and microstructural evolution of meta kaolin and meta-halloysite-based geopolymer binders: a comparative study. J. Therm. Anal. Calorimetry 147, 2055-2071 (2022). https://doi.org/10.1007/s10973-021-10555-2
  • 24. B. Zhang, H. Guo, P. Yuan, L. Deng, X. Zhong, Y. Li, Q. Wang, D. Liu, Novel acid-based geopolymer synthesized from nanosized tubular halloysite: The role of precalcination temperature and phosphoric acid concentration. Cem. Concr. Comp. 110, 103601 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103601
  • 25. C.R. Kazea, H.K. Tchakoutea, T.T. Mbakopa, J.R. Macheb, E. Kamseub, U.Ch. Meloa, C. Leonellic, H. Rahierd, Synthesis and properties of inorganic polymers (geopolymers) derived from Cameroon-meta-halloysite. Ceram. Int. 44, 18499-18508 (2018). https://doi.org/10.1016/j.ceramint.2018.07.070
  • 26. E. Barrie, V. Cappuyns, E. Vassilieva, R. Adriaens, S. Hollanders, D. Garcés, C. Paredes, Y. Pontikes, J. Elsen, L. Machiels, Potential of inorganic polymers (geopolymers) made of halloysite and volcanic glass for the immobilisation of tailings from gold extraction in Ecuador. Appl. Clay Sci. 109-110, 95-106 (2015). http://dx.doi.org/10.1016/j.clay.2015.02.025
  • 27. PN-EN 1015-10:2001 ”Metody badań zapraw do murów - Część 10: Określenie gęstości wysuszonej stwardniałej zaprawy”.
  • 28. P. Posi, Ch. Teerachanwit, Ch. Tanutong, S. Limkamoltip, S. Lertnimoolchai, V. Sata, P. Chindaprasirt, Lightweight geopolymer concrete containing aggregate from recycle lightweight Block. Mater. Des. 52, 580-586 (2013). https://doi.org/10.1016/j.matdes.2013.06.001
  • 29. R. N. Thakur, S. Ghosh, Effect of mix compositions on compressiv strength and microstructure of flay ash based geopolymer composites. ARPN J. Eng. Appl. Sci. 4, 68-74 (2009).
  • 30. J. Thaarrini, V. Ramasamy, Feasibility studies on compressive strength of Grodnu coal ash geopolymer mortar. Period Polytech Civ Eng. 59(3), 373-9 (2015). https://doi.org/10.3311/PPci.7696
  • 31. K. Gao, K.L. Lin, D.Y. Wang, Ch.L. Hwang, H.S. Shiu, Y.M. Chang, T.W. Cheng, Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Constr. Build. Mater. 53, 503-510 (2014). https://doi.org/10.1016/j.conbuildmat.2013.12.003
  • 32. A.M. Neville, Właściwości betonu (ISBN 978-83-61331-16-2), Edycja V, Stowarzyszenie Producentów Cementu, Kraków, 2012.
  • 33. M. Ghrici, S. Kenai, E. Meziane, Mechanical and durability properties of cement mortar with Algerian natural puzzolana. Mater. Sci. 41, 6965-6972 (2006). https://doi.org/10.1007/s10853-006-0227-0
  • 34. M. Cyr, R. Idir, T. Poinot, Properties of inorganic polymer (geopolymer) mortars made of glass cullet. J. Mater. Sci. 47, 2782-2797 (2012). https://doi.org/10.1007/s10853-011-6107-2
  • 35. M. Sofi, J.S.J. van Deventer, P.A. Mendis, G.C. Lukey, Engineering properties of inorganic polymer concretes. Cem. Concr. Res. 37, 251-257 (2007). https://doi.org/10.1016/j.cemconres.2006.10.008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-201d9de3-8d5a-4511-b21c-e592864bdbc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.