PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generating a set of compromise solutions of a multi objective linear programming problem through game theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most of real-life problems, including design, optimization, scheduling and control, etc., are inherently characterized by multiple conflicting objectives, and thus multi-objective linear programming (MOLP) problems are frequently encountered in the literature. One of the biggest difficulties in solving MOLP problems lies in the trade-off among objectives. Since the optimal solution of one objective may lead other objective(s) to bad results, all objectives must be optimized simultaneously. Additionally, the obtained solution will not satisfy all the objectives in the same satisfaction degree. Thus, it will be useful to generate a set of compromise solutions in order to present it to the decision maker (DM). With this motivation, after determining a modified payoff matrix for MOLP, all possible ratios are formed between all rows. These ratio matrices are considered a two person zero-sum game and solved by linear programming (LP) approach. Taking into consideration the results of the related game, the original MOLP problem is converted to a single objective LP problem. Since there exist numerous ratio matrices, a set of compromise solutions is obtained for MOLP problem. Numerical examples are used to demonstrate this approach.
Rocznik
Strony
77--88
Opis fizyczny
Bibliogr.27 poz., tab.
Twórcy
  • Department of Mathematical Engineering, Yildiz Technical University, Davutpasa, Istanbul, Turkey
  • Department of Mathematical Engineering, Yildiz Technical University, Davutpasa, Istanbul, Turkey
  • Department of Mathematical Engineering, Yildiz Technical University, Davutpasa, Istanbul, Turkey
autor
  • Department of Mathematics, Yildiz Technical University, Davutpasa, 34220 Esenler/Istanbul, Turkey
Bibliografia
  • [1] ANNAMDAS K.K., RAO S., Multi-objective optimization of engineering systems using game theory and particle swarm optimization, Eng. Opt., 2009, 41 (8), 737–752.
  • [2] ATHAN T.W., PAPALAMBROS P.Y., A note on weighted criteria methods for compromise solutions in multi-objective optimization, Eng. Opt., 1996, 27 (2), 155–176.
  • [3] BELENSON S.M., KAPUR K.C., An algorithm for solving multicriterion linear programming problems with examples, J. Oper. Res. Soc., 1973, 24 (1), 65–77.
  • [4] BISWAL M.P., ACHARYA S., Multi-choice multi-objective linear programming problem, J. Int. Math., 2013, 12 (5), 607–637.
  • [5] CHARKHGARD H., SAVELSBERGH M., TALEBIAN M., A linear programming based algorithm to solve a class of optimization problems with a multi-linear objective function and affine constraints, Comp. Oper. Res., 2018, 89, 17–30.
  • [6] COCOCCIONI M., PAPPALARDO M., SERGEYEV Y.D., Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm, Appl. Math. Comp., 2018, 318, 298–311.
  • [7] DAS S.K., GOSWAMI A., ALAM S.S., Multiobjective transportation problem with interval cost, source and destination parameters, Eur. J. Oper. Res., 1999, 17, 100–112.
  • [8] DEB K., SAXENA D.K., On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems, Kangal report, 2005, 2005011.
  • [9] GIAGKIOZIS I., FLEMING P.J., Methods for multi-objective optimization: An analysis, Inf. Sci., 2015, 293, 338–350.
  • [10] HUANG C.-H., GALUSKI J., BLOEBAUM C.L., Multi-objective pareto concurrent subspace optimization for multidisciplinary design, AIAA J., 2007, 45, 1894–1906.
  • [11] KASIMBEYLI R., OZTURK Z.K., KASIMBEYLI N., DINC G.D., ERDEM B.I., Comparison of some scalarization methods in multiobjective optimization, Bull. Malaysian Math. Sci. Soc., 2017, 1–31.
  • [12] KOOPMANS T.C., Analysis of production as an efficient combination of activities, [In:] T.C. Koopmans, A. Alchian, G.B. Dantizg, N. Georgescu-Roegen, P.A. Samuelson, A.W. Tucker (Eds.), Activity analysis of production and allocation, John Wiley and Sons, New York 1951, 13, 33–97.
  • [13] LAHDELMA R., MIETTINEN K., SALMINEN P., Reference point approach for multiple decision makers,Eur. J. Oper. Res., 2005, 164, 785–791.
  • [14] LEE C.S., Multi-objective game-theory models for conflict analysis in reservoir watershed management, Chemosphere, 2012, 87, 608–613.
  • [15] MARLER R.T., ARORA J.S., The weighted-sum method for multi-objective optimization: new insights, Struct. Multidisc. Opt., 2009, 41, 853–862.
  • [16] MATEJAŠ J., PERIC T., A new iterative method for solving multiobjective linear programming problem, Appl. Math. Comp., 2014, 243, 746–754.
  • [17] MENG R., YE Y., XIE N., Multi-objective optimization design methods based on game theory, Proc. 8th World Congress on Intelligent Control and Automation, 2010, 2220–2227.
  • [18] PAKSOY T., OZCEYLAN E., WEBER G.W., A multi-objective mixed integer programming model for multi echelon supply chain network design and optimization, Syst. Res. Inf. Techn., 2010, 47–57.
  • [19] RAO S.S., Game theory approach for multiobjective structural optimization, Comp. Struct., 1987, 25 (1), 119–127.
  • [20] RAO S.S., FREIHEIT T.I., A modified game theory approach to multiobjective optimization, J. Mech. Des., 1991, 113 (3), 286–291.
  • [21] ROMERO C., AMADOR F., BARCO A., Multiple objectives in agricultural planning: a compromise programming application, Am. J. Agric. Econ., 1987, 69 (1), 78–86.
  • [22] RONALD J., FIGUEIRA J.R., SMET Y.D., Finding compromise solutions in project portfolio selection with multiple experts by inverse optimization, Comp. Oper. Res., 2016, 66, 12–19.
  • [23] SABRI E.H., BEAMON B.M., A multi-objective approach to simultaneous strategic and operational planning in supply chain design, Omega, 2000, 28 (5), 581–598.
  • [24] SHAO L., EHRGOTT M., Primal and dual multi-objective linear programming algorithms for linear multiplicative programmes, Optimization, 2016, 65 (2), 415–431.
  • [25] SIM K., KIM J., Solution of multiobjective optimization problems: coevolutionary algorithm based on evolutionary game theory, Art. Life Rob., 2004, 8, 174–185.
  • [26] SUPRAJITNO H., Solving multiobjective linear programming problem using interval arithmetic, Appl. Math. Sci., 2012, 6 (80), 3959–3968.
  • [27] ZIMMERMANN H.J., Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst., 1978, 1 (1), 45–55.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20189249-597a-4d3a-b445-052aef8f87f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.