Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
Abstrakty
In the presented work, the conditions of the high-temperature and mechanochemical method for the synthesis of compound Sm 5VO 10 and their influence on its physicochemical properties were studied. The following methods were used for the study: X-ray powder diffraction (XRD), differential thermal analysis (DTA), infrared spectroscopy (FTIR), ultraviolet and visible light spectroscopy (UV–VIS–DRS), scanning electron microscopy (SEM-EDX), and laser beam diffraction spectrometry (LDS). Based on the results, it was determined that the compound Sm 5VO 10 is thermally stable in air atmospheres up to 1475 °C, crystallises in a monoclinic system, and its structure is made up of oxygen VO 4 and SmO 8 polyhedra. The estimated energy gap value for nanometric, mechanochemically obtained Sm 5VO 10 was about 3.20 eV, and for the microcrystalline, obtained with the high-temperature method, was about 2.75 eV. The established physicochemical characterisation of Sm 5VO 10 initially showed that the compound could find potential applications, e.g. as a photocatalyst for water purification or as a component of new optoelectronic materials.
Rocznik
Tom
Strony
art. no. e44
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Au C.T., Zhang W.D., Wan H.L., 1996. Preparation and characterization of rare earth orthovanadates for propane oxidative dehydrogenation. Catal. Lett., 37, 241–246. DOI: 10.1007/bf00807761.
- 2. Balaram V., 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front., 10, 1285–1303. DOI: 10.1016/j.gsf.2018.12.005.
- 3. Baláž P., Achimovičová M., Baláž M., Billik P., Cherkezova-Zheleva Z., Criado J.M., Delogu F., Dutková E., Gaffet E., Gotor F.J., Kumar R., Mitov I., Rojac T., Senna M., Streletskii A.,
- 4. Wieczorek-Ciurowa K., 2013. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev., 42, 7571–7637. DOI: 10.1039/c3cs35468g.
- 5. Brusset H., Madaule-Aubry F., Blanck B., Glaziou J.P., Laude J.P., 1971. Etude des oxydes mixtes de lanthanides et de vanadium(V). Can. J. Chem., 49, 3700–3707. DOI: 10.1139/v71-617.
- 6. Chakoumakos B.C., Abraham M.M., Boatner L.A., 1994. Crystal structure refinements of zircon-type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu). J. Solid State Chem., 109, 197–202. DOI: 10.1006/jssc.1994.1091.
- 7. Denisova L.T., Kargin Y.F., Chumilina L.G., Denisov V.M., Istomin S.A., 2015. Heat capacity and thermodynamic properties of the SmVO4 orthovanadate in the range 369–1020 K. Inorg. Mater., 51, 675–679. DOI: 10.1134/S0020168515060035.
- 8. Dunkle S.S., Helmich R.J., Suslick K.S., 2009. BiVO4 as a visiblelight photocatalyst prepared by ultrasonic spray pyrolysis. J. Phys. Chem. C, 113, 11980–11983. DOI: 10.1021/ jp903757x.
- 9. Filipek E., Wieczorek-Ciurowa K., 2009. Comparison between the synthesis in molybdenum and antimony oxides system by high-temperature treatment and high-energy ball milling. J. Therm. Anal. Calorim., 97, 105–110. DOI: 10.1007/s10973- 009-0071-y.
- 10. Frederickson L.D., Hausen D.M., 1963. Infrared spectra–structure correlation study of vanadium-oxygen compounds. Anal. Chem., 35, 818–827. DOI: 10.1021/ac60200a018.
- 11. Gao J., Zhao Y., Yang W., Tian J., Guan F., Ma Y., Hou J., Kang J., Wang Y., 2003. Preparation of samarium oxide nanoparticles and its catalytic activity on the esterification. Mat. Chem. Phys., 77, 65–69. DOI: 10.1016/S0254-0584(01)00594-6.
- 12. Gao L., Wong S.T.C., 2014. Chapter 11 – Label-free molecular vibrational imaging for cancer diagnosis, In: Chen X., Wong S. (Eds.), Cancer Theranostics. Academic Press, San Diego, 187–199. DOI: 10.1016/B978-0-12-407722-5.00011-6.
- 13. Ge X., Zhang Y., Wu H., Zhou M., Lin T., 2018. SmVO4 nanocrystals with dodecahedral shape: Controlled synthesis, growth mechanism and photoluminescence properties. Mater. Res. Bull., 97, 81–88. DOI: 10.1016/j.materresbull.2017. 08.037.
- 14. Huang S., Wang X., Zhu Q., Li X., Li J.-G., Sun X., 2020. Systematic synthesis of REVO4 micro/nano crystals with selective exposure of high energy {001}facets and luminescence (RE=lanthanide and Y0:95Eu0:05). J. Mater. Res. Technol., 9, 12547–12558. DOI: 10.1016/j.jmrt.2020.09.006.
- 15. Jain P., Arun P., 2013. Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films, 548, 241–246. DOI: 10.1016/j.tsf.2013.09.089.
- 16. Kitayama K., Katsura T., 1977. Phase equilibria in Sm2O3–V2O3–V2O5 system at 1200 ◦C. Bull. Soc. Chim. Jap., 50, 889–894. DOI: 10.1246/bcsj.50.889.
- 17. Kubelka P., Munk F., 1931. Ein Betrag zur Optik der Farbanstriche. Z. Tech. Phys., 12, 593–601.
- 18. Li T., He Y., Lin H., Cai J., Dong L., Wang X., Luo M., Zhao L., Yi X., Weng W., 2013. Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO4. Appl. Catal. B, 138–139, 95–103. DOI: 10.1016/j.apcatb.2013.02.024.
- 19. Malicka E., Karolus M., Panek J., Stokłosa Z., Groń T., Gudwański A. , Sawicki B., Goraus J., 2020. Effect of crystallite size on electrical and magnetic properties of CuCr2S4 nanoparticles obtained by mechanical alloying from sulphides. Physica B, 581, 411829. DOI: 10.1016/j.physb.2019.411829.
- 20. Patterson A.L., 1939. The Scherrer formula for X-ray particle size determination. Phys. Rev., 56, 978–982. DOI: 10.1103/PhysRev.56.978.
- 21. Piz M., Dulian P., Filipek E., Wieczorek-Ciurowa K., Kochmański P., 2018. Characterization of phases in the V2O5–Yb2O3 system obtained by high-energy ball milling and high-temperature treatment. J. Mater. Sci., 53, 13491–13500. DOI: 10.1007/s10853-018-2449-3.
- 22. Piz M., Filipek E., 2017. Synthesis and homogeneity range of Yb8−x Yx V2O17 in the Yb8V2O17–Y8V2O17 system. J. Therm. Anal. Calorim., 130, 277–283. DOI: 10.1007/s10973-017-6379-0.
- 23. Rahimi-Nasrabadi M., Pourmortazavi S.M., Aghazadeh M., Ganjali M.R., Karimi M.S., Novrouzi P., 2017. Samarium carbonateand samarium oxide; synthesis, characterization and evaluation of the photo-catalytic behavior. J. Mater. Sci.: Mater. Electron., 28, 5574–5583. DOI: 10.1007/s10854-016-6224-4.
- 24. Remizov V.G., Molodkin A.K., Skorikov V.M., 1976. Sistemi oksid vanadia(V)–oksid neodyma i oksid vanadia(V)–oksid samaria. Zh. Neorg. Khim., 21, 1323–1327.
- 25. Sriram B., Baby J.N., Hsu Y., Wang S., George M., 2023. Scheelite-type rare earth vanadates TVO4 (T=Ho, Y, Dy) electrocatalysts: Investigation and comparison of T site variations towards bifunctional electrochemical sensing application. Chem. Eng. J., 451, 138694. DOI: 10.1016/j.cej.2022.138694.
- 26. Tojo T., Zhang Q., Saito F., 2007. Mechanochemical synthesis of rare earth orthovanadates from R2O3 (R=rare earth elements) and V2O5 powders. J. Alloys Compd., 427, 219–222. DOI: 10.1016/j.jallcom.2006.02.052.
- 27. Yamaguchi O., Mukaida Y., Shigeta H., Takemura H., Yamashita M., 1989. Preparation of alkoxy-derived yttrium vanadate. J. Electrochem. Soc., 136, 1557–1560. DOI: 10.1149/1.2096960.
- 28. Zhang Q., Saito F., 2000. Mechanochemical synthesis of lanthanum aluminate by grinding lanthanum oxide with transition alumina. J. Am. Ceram. Soc., 83, 439–441. DOI: 10.1111/j.1151-2916.2000.tb01215.x.
- 29. Zhang Q., Saito F., 2012. A review on mechanochemical syntheses of functional materials. Adv. Powder Technol., 23, 523–531. DOI: 10.1016/j.apt.2012.05.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20144deb-552e-40c0-a3e0-742dd8525d32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.