PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using stealth technologies in mobile robotic complexes and methods of detection of low-sighted objects

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie technologii stealth w mobilnych zespołach robotycznychoraz metody wykrywania niewidocznych obiektów
Języki publikacji
EN
Abstrakty
EN
The paper outlines the latest technologies used by the world's leading manufacturers in the development of mobile low-observable robotic systems and promising measures to improve the quality of components and design of such objects. Methods of detecting objects using stealth technologies are considered, and it is shown that only due to a system approach it is possible to compensate for the reduction of the effective scattering surface of low-observable objects by technical means of radar stations. It is shown that the main method of increasing the range to the radio horizont is the use of an air-based radar. Methods of detecting objects on the traces of their interaction with the environment are promising for organization of cooperation of several radars in the detection of low-observable objects.
PL
W artykule przedstawiono najnowsze technologie stosowane przez wiodących światowych producentów w rozwoju mobilnych systemów robotycznych o niskiej obserwowalności oraz obiecujące działania mające na celu poprawę jakości komponentów i konstrukcji takich obiektów. Rozważono metody wykrywania obiektów wykorzystujące technologie stealth i wykazano, że tylko dzięki podejściu systemowemu możliwa jest kompensacja zmniejszenia efektywnej powierzchni rozpraszania obiektów słabo obserwowalnych przez stacje radarowe. Wykazano, że główną metodą zwiększenia zasięgu do poziomu radiowego jest użycie radaru lotniczego. Metody wykrywania obiektów na podstawie śladów ich interakcji z otoczeniem są obiecujące w wykrywaniu obiektów słabo obserwowalnych przy współpracy kilku radarów.
Rocznik
Strony
4--8
Opis fizyczny
Bibliogr. 21 poz.,
Twórcy
autor
  • National University of Water and Environmental Engineering, Department of Automation, Electrical Engineering and Computer-Integrated Technologies, Rivne Ukraine
  • Vinnytsia National Technical University, Faculty of Infocommunications, Radio Electronics and Nanosystems, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Faculty of Infocommunications, Radio Electronics and Nanosystems, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Faculty of Infocommunications, Radio Electronics and Nanosystems, Vinnytsia, Ukraine
Bibliografia
  • [1] Alekhin M., Klabukov I., Musienko S.: Smart Intelligent Aircraft Materials and Microsystems Technology. The future of the industry. Materials 4th ISTC. MFTI, Moscow 2012, 189–221 [http://doi.org/10.2139/ssrn.2456695].
  • [2] Bobovich B. B.: Non-metallic materials of construction. MGIU, Moscow 2009.
  • [3] Costa F. et al.: Ultra-thin absorbers for ultra-high frequency RFID systems. IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013, 1500–1501 [http://doi.org/10.1109/APS.2013.6711409].
  • [4] Furrutter M. K., Meyer J.: Small fuel cell powering an unmanned aerial vehicle. AFRICON 2009, 1–6 [http://doi.org/10.1109/AFRCON.2009.5308096].
  • [5] Garyn B. М., Dyakonova О. А., Kazantsev Yu. N.: Physical properties of resistive filaments and structures based on them in the microwave range. Journal of Technical Physics 69(1), 1999, 104–108.
  • [6] Guo T., Argyropoulos C.: Nonlinear and Amplification Response with Asymmetric Graphene-based Coherent Perfect Absorbers. IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting 2020, 727–728 [http://doi.org/10.1109/IEEECONF35879.2020.9330288].
  • [7] Hu P., Bao Q., Chen Z.: Target Detection and Localization Using Non-Cooperative Frequency Agile Phased Array Radar Illuminator. IEEE Access 7, 2019, 111277–111286 [http://doi.org/10.1109/ACCESS.2019.2934754].
  • [8] Joshi S. A. et al.: Wireless controlled military combat robot system. 2nd International Conference on Communication and Electronics Systems (ICCES), 2017, 712–715 [http://doi.org/10.1109/CESYS.2017.8321173].
  • [9] Kablov Е. N.: Strategic directions for the development of materials and technologies for their processing for the period until 2030. Aviation materials and technologies 8, 2012, 7–17.
  • [10] Khan M. A. H. et al.: Accelerated Stress Tests and Statistical Reliability Analysis of Metal-Oxide/GaN Nanostructured Sensor Devices. IEEE Transactions on Device and Materials Reliability 20(4), 2020, 742–747 [http://doi.org/10.1109/TDMR.2020.3028786].
  • [11] Le K. Q. et al.: Dielectric Antireflection Fiber Arrays for Absorption Enhancement in Thin-Film Organic Tandem Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics 22(1), 2016, 1–6 [http://doi.org/10.1109/JSTQE.2015.2447551].
  • [12] Li X., Wei P., Wei Z. J., Guosong L., Ping W.: Research on Security Issues of Military Internet of Things. 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2020, 399–403 [http://doi.org/10.1109/ICCWAMTIP51612.2020.9317401].
  • [13] Lisý K. et al.: Measurement and Evaluation of Dielectric, Magnetic and Microwave Absorbing Properties of Carbonyl Iron Loaded Polymer Composites. 12th International Conference on Measurement, 2019, 240–243, [http://doi.org/10.23919/MEASUREMENT47340.2019.8779863].
  • [14] Muradyan V. E., Sokolov E. A., Babenko S. D., Moravskii А. P.: Dielectric properties of composites modified with carbon nanostructures in the microwave range. Journal of Technical Physics 80(2), 2010, 83–87.
  • [15] Skolnik M. I.: Radar Handbook, Third Edition. McGraw-Hill Education, 2008.
  • [16] Tyapkin V. N.: Fundamentals of building radar stations for radio engineering troops. Siberian Federal University, Krasnoyarsk 2011.
  • [17] Wallace J. L.: Broadband Magnetic Microwave Absorbers: Fundamental Limitations. IEEE Trans. Magn. 29(3), 1993, 4209–4214.
  • [18] Wong E. Y., Sambaluk N. M.: Disruptive innovations to help protect against future threats. International Conference on Cyber Conflict (CyCon U.S.), 2016, 1–5 [http://doi.org/10.1109/CYCONUS.2016.7836629].
  • [19] Yuan J. et al.: Potential for Application of Retroreflective Materials instead of Highly Reflective Materials for Urban Heat Island Mitigation. Urban Studies Research 10, 2016 [http://doi.org/10.1155/2016/3626294].
  • [20] Zhang K., Zhao N., Wang Y.H.: Closed-Loop Nuclear Magnetic Resonance Gyroscope Based on Rb-Xe. Sci Rep 10, 2020 [http://doi.org/10.1038/s41598-020-59088-y].
  • [21] Zhao Z., Niu Y., Ma Z., Ji X.: A fast stealth trajectory planning algorithm for stealth UAV to fly in multi-radar network. IEEE International Conference on Real-time Computing and Robotics (RCAR), 2016, 549–554 [http://doi.org/10.1109/RCAR.2016.7784089].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2010249e-8da5-4088-a5af-ea2abaad6226
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.