PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Polycyclic Aromatic Hydrocarbons on Germination and Initial Growth of Selected Lawn Grass Species in Soil Polluted with PAHs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grasses are often used to recultivate areas contaminated during shale gas extraction. This is due to the fact that they adapt very well to unfavorable soil conditions such as: high pH, salinity, water deficit or the presence of harmful substances. Additionally, the grass root system releases enzymes into the soil that increase the activity of microorganisms and bacteria that decompose polycyclic aromatic hydrocarbons (PAH), which are the main component of drilling waste. In turn, assessment of initial growth and development (germination tests) is a cheap and quick method to assess the sensitivity of the tested plants to pollutants. Young plants are more susceptible to harmful substances. The study aimed to determine the effect of drilling waste, containing polycyclic aromatic hydrocarbons (PAHs) on the initial growth and development of selected grass species, with a specific focus on germination energy and capacity, as young plants are more sensitive to harmful substances compared to older plants. Among the tested species, Lolium perenne and Festuca rubra showed the highest energy and germination ability, while Poa pratensis showed the lowest. The experiment showed that of the tested grass species, Lolium perenne and Festuca rubra were the least sensitive to the effects of PAHs, with the smallest reductions in root length and seedling height observed in these species. Additionally, the highest concentration of PAHs was found in soil seeded with Lolium perenne, while the lowest was found in soil seeded with Poa pratensis.
Rocznik
Strony
175--186
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
  • University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
  • Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin, Poland
Bibliografia
  • 1. Abdel-Shafy H.I., Mansour M.S.M. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.
  • 2. Afegbua S.L., Batty L.C. 2018. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation. Environmental Science and Pollution Research, 25(19), 18596–18603.
  • 3. Alagić S.Č., Jovanović V.P.S., Mitić V.D., Cvetković J.S., Petrović G.M., Stojanović G.S. 2016. Bioaccumulation of HMW PAHs in the roots of wild blackberry from the Bor region (Serbia): Phytoremediation and biomonitoring aspects. Science of The Total Environment, 562, 561–570.
  • 4. Allard A.S., Remberger M., Neilson A.H. 2000. The negative impact of aging on the loss of PAH components in a creosote-contaminated soil. International Biodeterioration & Biodegradation, 46(1), 43–49.
  • 5. Antizar-Ladislao B., Lopez-Real J., Beck A.J. 2006. Bioremediation of polycyclic aromatic hydrocarbons (PAH) in an aged coal-tar-contaminated soil using different in-vessel composting approaches. Journal of Hazardous Materials, 137(3), 1583–1588.
  • 6. Aprill W., Sims R.C. 1990. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere, 20, 253–265.
  • 7. Aranda R., Martinez-Pagán P. 2012. Methodology for the detection of contamination byhydrocarbons and further soil sampling for volatile and semi-volatile organic enrichment in former petrol stations, SE Spain. Eurasian Soil Sci., 1(1), 10–15.
  • 8. Banks M.K., Lee E., Schwab A.P. 1999 Evaluation of dissipation mechanisms for benzo[a]pyrene in the rhizosphere of tall fescue. J Env Qual, 28, 294–298.
  • 9. Beriro D.J., Cave M. R., Wragg J., Thomas R., Wills G., Evans F. 2016. A review of the current state of the art of physiologically-based tests for measuring human dermal in vitro bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil. Journal of Hazardous Materials, 305, 240–259.
  • 10. Binet P., Portal J., Leyval C. 2000a. Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biology and Biochemistry, 32(14), 2011–2017.
  • 11. Binet P., Portal J., Leyval C. 2000b. Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant and Soil, 227, 207–213
  • 12. Binet, P., Portal, J.M., Leyval, C. 2001. Application of GC–MS to the study of anthracene disappearance in the rhizosphere of ryegrass. OrganicGeochemistry, 32(2), 217–222.
  • 13. Bisht S., Pandey P., Bhargava B., Sharma S., Kumar V., Sharma K. D. 2015. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7–21.
  • 14. Borowik A., Wyszkowska J., Gałązka A. Kucharski J. 2019.Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil. Environ Sci Pollut Res, 26, 27738–27751.
  • 15. Cheema S.A., Khan M.I., Tang X., Zhang C., Shen C., Malik Z., Ali S., Yanga J., Shena K., Chena X., Chen Y. 2009. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). Journal of Hazardous Materials, 166(2-3), 1226–1231.
  • 16. Conte F., Copat C., Longo, S., Oliveri Conti, G., Grasso, A., Arena, G., Dimartino, A., Brundo, M.V., Ferrante, M. 2016. Polycyclic aromatic hydrocarbons in Haliotistuberculata (Linnaeus, 1758) (Mollusca, Gastropoda): Considerations on food safety and source investigation. Food Chem. Toxicol. 94, 57–63.
  • 17. Cristaldi A., Conti G.O., Jho E.H., Zuccarello P., Grasso A., Copat C., Ferrante M. 2017. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation, 8, 309–326.
  • 18. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air
  • 19. Dziadczyk P. 2002. Genetyczne uwarunkowanie tolerancji na stresy abiotyczne u roślin. Zesz. Probl. Post. Nauk Rol., 481, 49–60.
  • 20. Fang C., Radosevich M., Fuhrmann J.J. 2001. Atrazine and phenanthrene degradation in grass rhizosphere soil. SoilBiology and Biochemistry, 33(4–5), 671–678.
  • 21. Gabov D.N., Beznosikov V.A., Kondratenok B.M., Yakovleva E.V. 2010. Polycyclic aromatic hydrocarbons in the soils of technogenic landscapes. Geochemistry International, 48(6), 569–579.
  • 22. Gałązka A., Gałązka R. 2015. Phytoremediation of polycyclic aromatic hydrocarbons in soils artificially polluted using plant-associated-endophytic bacteria and dactylis glomerata as the bioremediation plant. Polish J. Microbiol., 64, 241–252.
  • 23. Gawryluk A., Stępniowska A., Lipińska H. 2022. Effect of soil contamination with polycyclic aromatic hydrocarbons from drilling waste on germination and growth of lawn grasses. Ecotoxicology and Environmental Safety, 1(236), 113492.
  • 24. Gennadiev A.N., Tsibart A.S. 2013. Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: Factors and features of accumulation. Eurasian Soil Science, 46(1), 28–36.
  • 25. Ghavidel A., Rad S.N., Alikhani H.A., Yakhchali B., Pourbabai A.A. 2018. Presence of Eisenia fetida enhanced phytoremediation of anthracene by lolium perenne. BioscienceJournal, 34(4), 888–898.
  • 26. Golińska B. 2009.Właściwości biologiczne odmian kostrzewy owczej w warunkach ekstensywnego użytkowania trawnikowego. Zeszyty Naukowe WSA w Łomży, 39, 75–81
  • 27. Günther T., Dornberger U., Fritsche W. 1996. Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere, 33(2), 203–215.
  • 28. Harris J.A., Birch P., Palmer J. 1996. Land Restoration and Reclamation: Principles and Practice. Addison Wesley/Longman Ltd (Chapter 5).
  • 29. Henner P., Schiavon M., Druelle V., Lichtfouse E., 1999. Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Organic Geochemistry, 30(8), 963–969.
  • 30. Huang X.D., El-Alawi Y., Penrose D.M., Glick B.R., Greenberg B.M. 2004. Responses of three grass species to creosote during phytoremediation. Environmental Pollution, 130(3), 453–463.
  • 31. ISTA 2015, International Rules for Seed Testing, Vol. 2015, Chapter 5, i–5–56 (60).
  • 32. Joner E.J., Leyval C. 2001. Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza, 10(4), 155–159.
  • 33. Kanaly R.A., Harayama S. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182(8), 2059–2067.
  • 34. Kaur N., Erickson T.E., Ball A.S., Ryan M.H. 2017. A review of germination and early growth as a proxy for plant fitness under petrogenic contamination – knowledge gaps and recommendations. Science of the Total Environment, 603–604, 728–744.
  • 35. Khashij S., Karimi B., Makhdoumi P. 2018. Phytoremediation with Festuca arundinacea: A Mini Review. J Health Rep Technol, 4(2), e86625.
  • 36. Kirk J.L., Klironomos J.N., Lee H., Trevors J.T. 2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution, 133(3), 455–465.
  • 37. Kolb M., Harms H. 2000. Metabolism of fluoranthene in different plant cell cultures and intact plants. EnvironmentalToxicology and Chemistry, 19(5), 1304–1310.
  • 38. Kucerová P., in der Wiesche C., Wolter M., Macek T., Zadrazil F., Macková M. 2001. Biotechnology Letters, 23(16), 1355–1359.
  • 39. Kujawska J., Wasąg H., Gawryluk A. 2020. Assessment of drilling waste addition on the salinity of soils and growth of selected grass species. Journal of Ecological Engineering, 2(1), 63–71.
  • 40. Lalande T.L., Skipper H.D., Wolf D.L., Reynolds C.M., Freedman D.L., Pinkerton B.W., Hartel P.G., Grimes L.W. 2003. Phytoremediation of pyrene in a cecil soil under field conditions. Int. J. Phyto., 5, 1–12.
  • 41. Lasota J., Łyszczarz S., Kempf P., Kempf M., Błońska E. 2021. Effect of species composition on polycyclic aromatic hydrocarbon (PAH) accumulation in urban forest soils of Krakow. Water Air Soil Pollut, 232, 74.
  • 42. Liste H.H., Alexander M. 2000a. Plant-promoted pyrene degradation in soil. Chemosphere, 40(1), 7–10.
  • 43. Liste H.H., Alexander M. 2000b. Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere, 40(1), 11–14.
  • 44. Liste H.H., Prutz I. 2006. Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere, 62(9), 1411–1420.
  • 45. Ma B., Chen H., He Y., Wang H., Xu J. 2010. Evaluation of toxicity risk of polycyclic aromatic hydrocarbons (PAHs) in crops rhizosphere of contaminated field with sequential extraction. Journal of Soils and Sediments, 10(5), 955–963.
  • 46. Maila M.P., Cloete T.E. 2002. Germination of lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Int. Biodeterior. Biodegrad., 50, 107–113.
  • 47. Mojiri A., Zhou J.L., Ohashi A., Ozaki N., Kindaichi T. 2019. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 133971.
  • 48. Molina, L., Segura A. 2021. Biochemical and metabolic plant responses toward polycyclic aromatic hydrocarbons and heavy metals present in atmospheric pollution. Plants, 2021, 10, 2305.
  • 49. Oguntimehin I., Eissa F., Sakugawa H. 2010. Negative Effects of Fluoranthene on the Ecophysiology of Tomato Plants (Lycopersicon esculentum Mill.). Chemosphere, 78, 877–884.
  • 50. Ossai I.C., Ahmed A., Hassan A., Hamid F.S. 2020. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17, 100526
  • 51. Ouvrard S., Leglize P., Morel J.L. 2014. PAH phytoremediation: rhizodegradation or rhizoattenuation? International Journal of Phytoremediation, 16(1), 46–61.
  • 52. Parrish Z.D., Banks M.K., Schwab A.P. 2004. Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. International Journal of Phytoremediation, 6(2), 119–137.
  • 53. Patel A.B., Shaikh S., Jain K.R., Desai C., Madamwar D. 2020. Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Frontiers in Microbiology, 11, 562813.
  • 54. Patowary R., Patowary K., Devi A., Kalita M.C., Deka S. 2016. Uptake of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) by Oryza sativa L. grown in soil contaminated with crude oil. Bulletin of Environmental Contamination and Toxicology, 98(1), 120–126.
  • 55. Pawluśkiewicz B. 2000. Kiełkowanie i początkowy rozwój traw gazonowych w warunkach zasolenia i alkalizacji podłoża. Łąkarstwo w Polsce, 3, 119–128
  • 56. Polish National List of Agricultural Plant Varieties 2022, COBORU Research Centrefor Cultivar Testing.
  • 57. Rajakaruna N., Tompkins K.M., Pavicevic P.G. 2006. Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Ceylon Journal of Science, 35(1), 25.
  • 58. Reddy K.R., Chirakkara R.A., Martins Ribeiro L.F. 2020. Effects of elevated concentrations of co-existing heavy metals and PAHs in soil on phytoremediation. J. Hazard. Toxic Radioact. Waste 24(4), 04020035.
  • 59. Reed M.L.E., Glick B.R. 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can. J. Microbiol., 51, 1061–1069.
  • 60. Rodriguez-Campos J., Perales-Garcia A., Hernandez-Carballo J., Martinez-Rabelo F., Hernández- Castellanos B., Barois I., Contreras-Ramos S.M. 2018. Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation. Journal of Soils and Sediments, 19, 1981–1994.
  • 61. Rutkowska B., Pawluśkiewicz M. 1996. Trawniki. Poradnik zakładania i pielęgnowania. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 1–100.
  • 62. Schwab A.P., Banks M.K. 1994. Biologicallymediateddissipation of polyaromatichydrocarbons in the rootzone. In: Bioremediation Through Rhizosphere Technology, T.A. Anderson and J.R. Coats (Eds.). American Chemical Society, Washington DC, pp. 132–141.
  • 63. Sivaram A.K., Logeshwaran P., Lockington R., Naidu R., Megharaj M. 2018. Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils. Chemosphere, 193, 625–634.
  • 64. Smith M.J., Flowers T.H., Duncan H.J., Alder J. 2006. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. EnvironmentalPollution, 141(3), 519–525.
  • 65. Soleimani M., Afyuni M., Hajabbasi M.A., Nourbakhsh F., Sabzalian M.R., Christensen J.H. 2010. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere, 81(9), 1084–90.
  • 66. Sverdrup L.E., Krogh P.H., Nielsen T., Kjær C., Stenersen J. 2003. Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba). Chemosphere, 53(8), 993–1003.
  • 67. Wei H., Song S., Tian H., Liu T. 2014. Effects of phenanthrene on seed germination and some physiological activities of wheat seedling. Comptes Rendus Biologies, 337(2), 95–100.
  • 68. Wyszkowska J., Borowik A., Kucharski J. 2019. The resistance of Lolium perenne L. × hybridum, Poa pratensis, Festuca rubra, F. arundinacea, Phleum pratense and Dactylis glomerata to soil pollution by diesel oil and petroleum. Plant, Soil and Environment, 65(6), 307–312.
  • 69. Yun Y., Liang L., Wei Y., Luo Z., Yuan,F., Li G., Sang N. 2019. Exposure to Nitro-PAHs interfere with germination and early growth of Hordeum vulgare via oxidative stress. Ecotoxicol. Environ. Saf., 180, 756–761.
  • 70. Zhu H., Gao Y., Li D. 2019. Germination and growth of grass species in soil contaminated by drill cuttings. West N Am Naturalist, 79(1), 49–55.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-200eb848-1a3a-4142-92a2-c18e4fc1df26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.