PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential Energy Power from Tidal Current in Lagoon System – The Case of Oualidia Lagoon, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lagoon is a natural system protected from the sea by a dune barrier creating energy from the movement of rising and falling tides, thus providing a sustainable option for extracting energy from tidal currents. The energy that can be extracted is one of the most potential renewable energy sources. Therefore, the interaction of tidal currents with stratification layers has become important to optimize the efficiency of energy conversion at each depth layer in water masses. We have chosen as a case study, the Oualidia lagoon (Atlantic coast of Morocco). This ecosystem is characterized by hydrodynamics relatively favored by tides and tidal currents which are the main intra-lagoon currents, with a predominance of the semi-diurnal component M2 (period of 12 h 25) with 2.1 to 3.4 m of tidal range. The Multicell Argonaut-XR ADCP is used to measure the current velocity in the Oualidia lagoon at three different stations to study tidal patterns in a vertical layer of water depth. At each station, current velocities were recorded in each 0.5 m layer over a depth of about 5 m. As a result, this study showed that current velocity measurements to be used as renewable energy are found at station 1 located at a depth of 3.5 meters (~layer 5) with a current velocity of 0.771 m/s and a power density value of 235.344 W/m2, station 2 located at a depth of 3.5 meters (~layer 5) with a current velocity of 0.4 m/s and a power density value of 32.86 W/m2 and station 3 is located at a depth of 3 meters (~layer 6) with a current velocity of 0.527 m/s and a power density value of 75.157 W/m2. The variation in current velocities between the different stations is mainly influenced by tides (Flood/ebb), the period of the measurements and the location of the stations. This work presents a model for extracting electrical energy through the use of tidal and current flow variations in such semi-enclosed natural system including lagoons.
Słowa kluczowe
Twórcy
  • Marine Geosciences and Soil Science Laboratory (URAC-45), Earth Sciences Department, Faculty of Sciences, Chouaib Doukkali University, Av. des Facultés, El Jadida 24000, Morocco
  • Departement of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Jl. Prof. Sudarto No. 13, Tembalang, Kec. Tembalang, Kota Semarang, Java Tengah 50275, Indonesia
  • Marine Geosciences and Soil Science Laboratory (URAC-45), Earth Sciences Department, Faculty of Sciences, Chouaib Doukkali University, Av. des Facultés, El Jadida 24000, Morocco
autor
  • Marine Geosciences and Soil Science Laboratory (URAC-45), Earth Sciences Department, Faculty of Sciences, Chouaib Doukkali University, Av. des Facultés, El Jadida 24000, Morocco
  • Highet School of Technology [ESTE], Cadi Ayyad University, Km 9, Route d’Agadir, Essaouira Aljadida BP. 383, Ghazoua, Essaouira 44000, Morocco
  • Nautical Science and Naval Engineering Department, Institut Supérieur d’Etudes Maritimes, Km 7, Road El Jadida, Casablanca B.P. 20520, Morocco
  • Marine Geosciences and Soil Science Laboratory (URAC-45), Earth Sciences Department, Faculty of Sciences, Chouaib Doukkali University, Av. des Facultés, El Jadida 24000, Morocco
  • Marine Geosciences and Soil Science Laboratory (URAC-45), Earth Sciences Department, Faculty of Sciences, Chouaib Doukkali University, Av. des Facultés, El Jadida 24000, Morocco
Bibliografia
  • 1. Abbaspour, M., Rahimi, R. 2011. Iran atlas of offshore renewable energies. Renewable Energy 36, 388–398. https://doi.org/10.1016/j.renene.2010.06.051
  • 2. Aroussy, Y., Nachtane, M., Saifaoui, D., Tarfaoui, M. 2016. Numerical investigation of a reverse osmosis desalination system with cogeneration and renewable energy... Numerical investigation of a reverse osmosis desalination system with cogeneration and renewable energy integration.
  • 3. Blunden, L.S., Bahaj, A.S. 2006. Initial evaluation of tidal stream energy resources at Portland Bill, UK. Renewable Energy 31, 121–132. https://doi.org/10.1016/j.renene.2005.08.016
  • 4. Bouchkara, M., El Khalidi, K., Benazzouz, A., Erraji Chahid, N., Joudar, I., Zourarah, B., Maanan, M. 2022. Study of morphodynamic and sedimentological changes in the oualidia lagoon (morocco) using bathymetric data: first investigations after the sediment trap dredging. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-4/W3-2021, 53–63. https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-53-2022
  • 5. Cornett, A., Durand, N., Bourban, S. 2010. 3D Modelling and Assessment of Tidal Current Energy Resources in the Bay of Fundy. Proceedings of the 3rd International Conference on Ocean Energy, 2–7.
  • 6. Cowles, G.W., Hakim, A.R., Churchill, J.H. 2017. A comparison of numerical and analytical predictions of the tidal stream power resource of Massachusetts, USA. Renewable Energy, 114, 215–228. https://doi.org/10.1016/j.renene.2017.05.003
  • 7. El-Geziry, T.M., Couch, S.J. 2009. Environmental impact assessment for tidal energy schemes: An exemplar case study of the Strait of Messina. Proceedings of the Institute of Marine Engineering, Science and Technology Part A: Journal of Marine Engineering and Technology, 4177, 39–48. https://doi.org/10.1080/20464177.2009.11020217
  • 8. El Khalidi, K., Zourarah, B., Aajjane, A. 2011. Evolution récente de la morphologie de delta de flot et son effet sur la dynamique hydro-sédimentaire de la lagune de Oualidia (côte atlantique, Maroc): approche par photographie aérienne. Estudos do Quaternário, 7, 73–78.
  • 9. Ferro, B. 2006. Wave and Tidal Energy: Its Emergence and the Challenges it Faces. Refocus, 7(3), 46–48.
  • 10. Garcia Novo, P., Kyozuka, Y. 2016. Field measurement and numerical study of tidal current turbulence intensity in the Kobe Strait of the Goto Islands, Nagasaki Prefecture. Journal of Marine Science and Technology. https://doi.org/10.1007/s00773-016-0414-x
  • 11. Geme, 2003. Diagnosis and studies of the containment of the Oualidia lagoon - Phase 2 – Measurement campaign. Royaume du Maroc : Direction Provinciale de l’Equipement d’El Jadida, Ministère de l’Equipement et du Transport, 60.
  • 12. Guillou, N., Neill, S.P., Robins, P.E. 2018. Characterising the tidal stream power resource around France using a high-resolution harmonic database. Renewable Energy, 123, 706–718. https://doi.org/10.1016/j.renene.2017.12.033
  • 13. Hagerman, G., Polagye, B. 2006. Methodology for estimating tidal current energy resources and power production by tidal in-stream energy conversion (TISEC) devices. Electric Power Research Institute.
  • 14. Hilmi, K., Orbi, A., Lakhdar, J.I., Sarf, F. 2005. Etude courantologique de la lagune de Oualidia (Maroc) en automne, 7, 67–71.
  • 15. Iglesias, G., Carballo, R. 2014. Wave farm impact: The role of farm-to-coast distance. Renewable Energy, 69, 375–385. https://doi.org/10.1016/j.renene.2014.03.059
  • 16. Ismanto, A., Ismunarti, D.H., Sugianto, D.N., Maisyarah, S., Subardjo, P., Dwi Suryoputro, A.A., Siagian, H. 2019. The potential of ocean current as electrical power sources alternatives in Karimunjawa Islands Indonesia. Advances in Science, Technology and Engineering Systems, 4, 126–133. https://doi.org/10.25046/aj040615
  • 17. Karim, H., Omar, E., Mohammed, I., Jamila, L., Benyounes, A., Zineb, E., Abdellatif., etOrbi, Ahmed, M. 2017. Fonctionnement Hydrodynamique De La Lagune De Oualidia (Maroc) Avant L’Amenagement De La Souille. International Journal of Advanced Research, 5, 2015–2027. https://doi.org/10.21474/ijar01/4937
  • 18. Kiho, B. 2011. Tests on Ducted and Bare helical and straight blade Darrieus hydrokinetic turbines, Renewables Energy, 36, 3013–3022.
  • 19. Koutitonsky, V.G., Orbi, A., Ouabi, M. et I.I., n.d. L’étude du comportement hydro-sédimentaire du système lagunaire Oualidia par la modélisation mathématique. Phase 1 : Synthèse des données et simulations de la réfraction des houles. Direction des Ports et du Domaine Public Maritime, Ministère de l’Équipement et du Transport, Royaume du Maroc, 150.
  • 20. Koutitonsky, V.G., Ouabi, M., I.I. 2007. L’étude du comportement hydrosédimentaire du système lagunaire Oualidia par la modélisation mathématique. Phase 2: Modélisation hydro-sédimentaire de l’état actuel et de scenarios d’aménagement. Direction des Ports et du Domaine Public Maritime, Ministère de l’Équipement et du Transport, Royaume du Maroc 204 p + Annexes, 40.
  • 21. Kyozuka, Y., Ogawa, K. 2006. Tidal Current Power Generation Making Use of a Bridge Pier. OCEANS 2006 - Asia Pacific 1–8. https://doi.org/10.1109/OCEANSAP.2006.4393925
  • 22. L’Electricité, O.N. de. 2020. Global Rural Electrification Program (PERG). Rapport Annuel. Morocco: ONE.
  • 23. Mejia-Olivares, C.J., Haigh, I.D., Wells, N.C., Coles, D.S., Lewis, M.J., Neill, S.P. 2018. Tidalstream energy resource characterization for the Gulf of California, México. Energy, 156, 481–491. https://doi.org/10.1016/j.energy.2018.04.074
  • 24. MEMEE. 2012. Les Energies Renouvelables au Maroc: Stratégie et plan d’action. Ministère de l’Energie, des Mines, de l’Eau et de l’Environnement (MEMEE).
  • 25. Moreno N., et. al. 2010. Ocean Current’s Energy: How to produce electrical energy thanks to the marine currents. Report of Renewable Energy Project 2008, Hogskolan I Gavle.
  • 26. Neill, S.P., Angeloudis, A., Robins, P.E., Walkington, I., Ward, S.L., Masters, I., Lewis, M.J., Piano, M., Avdis, A., Piggott, M.D., Aggidis, G., Evans, P., Adcock, T.A.A., Židonis, A., Ahmadian, R., Falconer, R. 2018. Tidal range energy resource and optimization – Past perspectives and future challenges. Renewable Energy, 127, 763–778. https://doi.org/10.1016/j.renene.2018.05.007
  • 27. Pu, X., Shi, J.Z., Hu, G.D. 2017. The effect of stratification on the vertical structure of the tidal ellipse in the Changjiang River estuary, China. Journal of Hydro-Environment Research, 15, 75–94. https://doi.org/10.1016/j.jher.2017.03.004
  • 28. Ren, L., Nash, S., Hartnett, M. 2015. Observation and modeling of tide- and wind-induced Surface currents in Galway Bay. Water Science and Engineering, 8, 345–352. https://doi.org/10.1016/j.wse.2015.12.001
  • 29. Rourke, F.O., Boyle, F., Reynolds, A. 2010. Marine current energy devices: Current status and possible future applications in Ireland. Renewable and Sustainable Energy Reviews, 14, 1026–1036. https://doi.org/10.1016/j.rser.2009.11.012
  • 30. Rusu, L., Onea, F. 2015. Assessment of the performances of various wave energy converters along the European continental coasts. Energy, 82, 889–904. https://doi.org/10.1016/j.energy.2015.01.099
  • 31. Serhadlıoğlu, S., Adcock, T.A.A., Houlsby, G.T., Draper, S., Borthwick, A.G.L. 2013. Tidal stream energy resource assessment of the Anglesey Skerries. International Journal of Marine Energy, 3–4, e98–e111. https://doi.org/10.1016/j.ijome.2013.11.014
  • 32. Siagian, H., Ismanto, A., Putra, T.W.L., Pranata, 2021. Stratification on the Vertical Structure of the Tidal Ellipse and Power Density Estimation in the Larantuka Strait, East Flores Based on ADCP Measurement Data. IOP Conference Series: Earth and Environmental Science, 750, 012023. https://doi.org/10.1088/1755-1315/750/1/012023
  • 33. Siagian, H., Sugianto, D., Kunarso. 2019a. Current Velocity Impacts from Interaction of Semidiurnal and Diurnal Tidal Constituents for Tidal Stream Energy in East Flores Current Velocity Impacts from Interaction of Semidiurnal and Diurnal Tidal Constituents for Tidal Stream Energy in. IOP Conference Series: Earth and Environmental Science, 246, 246. https://doi.org/10.1088/1755-1315/246/1/012056
  • 34. Siagian, H., Sugianto, D.N., Kunarso, Pranata, A.S. 2019b. Estimation of Potential Energy Generated From Tidal Stream in Different Depth Layer at East Flores Waters Measured by ADCP. IOP Conference Series: Earth and Environmental Science, 246, 12052. https://doi.org/10.1088/1755-1315/246/1/012052
  • 35. Sierra, J.P., González-Marco, D., Sospedra, J., Gironella, X., Mösso, C., Sánchez-Arcilla, A. 2013. Wave energy resource assessment in Lanzarote (Spain). Renewable Energy, 55, 480–489. https://doi.org/10.1016/j.renene.2013.01.004
  • 36. Togneri, M., Lewis, M., Neill, S., Masters, I. 2017. Comparison of ADCP observations and 3D model simulations of turbulence at a tidal energy site. Renewable Energy, 114, 273–282. https://doi.org/10.1016/j.renene.2017.03.061
  • 37. Wei, Z., Fang, G., Susanto, R.D., Adi, T.R., Fan, B., Setiawan, A., Li, S., Wang, Y., Gao, X. 2016. Tidal elevation, current, and energy flux in the area between the South China Sea and Java Sea. Ocean Science, 12, 517–531. https://doi.org/10.5194/os-12-517-2016
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-200d9348-8c9a-4755-9479-1a838d3eceb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.