PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A simulation and experimental verification of the operation of the oxidising catalytic converter in diesel engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the characteristics of an oxidising catalytic converter for a diesel engine's particulate filter system, analyzed through simulation and empirical studies. Constructed from a metal monolith, the converter has a 1.4 dm3 volume, 400 cpsi channel density, and a 2.5 g/dm3 platinum coating. Its chemical composition was examined using a scanning electron microscope, revealing platinum crystallites on a highly porous surface. Simulation tests in the AVL Boost program, utilizing real exhaust gasconcentration data, assessed the converter's efficiency in converting CO, HC, and NO2 in NOX at various engine speeds and channel conditions. An experiment on an engine dynamometer paralleled these simulations, verifying their accuracy. The study indicates that the simulation algorithm can predict the converter's performance, potentially reducing the need for extensive empirical testing and aiding in preliminary evaluations.
Rocznik
Strony
art. no. 184090
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Bibliografia
  • 1. Stanislaw. W. Kruczyński, Marcin Ślęzak. Zarys metod oczyszczania spalin w pojazdach samochodowych WKL Warszawa 2021.ISBN 978-83-206-2042-9.
  • 2. Stanislaw. W. Kruczyński, Marcin Ślęzak. Reaktory katalityczne w pojazdach samochodowych Wydawnictwo ITS Warszawa 2023. ISBN 978-83-66554-03-0.
  • 3. Gieshoff J., Schäfer-Sindlinger A., Spurk P. C., Van den Tillaart J., Garr G.: Improved SCR Systems for Heavy Duty Applications. SAE Technical Paper 2000-01-0189. https://doi.org/10.4271/2000-01-0189.
  • 4. Chandler G., Cooper B., Harris J., Thoss J., Uusimäki A., Walker A., Warren J.: An Integrated SCR and Continuously Regenerating Trap System to Meet Future NOx and PM Legislation, SAE Technical Paper 2000-01-0188. https://doi.org/10.4271/2000-01-0188.
  • 5. Koebel, M., G. Madia, M. Elsener, 2002. “Selective catalytic reduction of NO and NO2at low temperatures”, Catalysis Today, 73 (3/4), 239-247.https://doi.org/10.1016/S0920-5861(02)00006-8.
  • 6. Andrych-Zalewska M, Chlopek Z, Pielecha J, Merkisz J, Investigation of exhaust emissions from the gasoline engine of a light duty vehicle in the Real Driving Emissions test. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2023: 25(2). http://doi.org/10.17531/ein/165880.
  • 7. Puchalski A, Ślęzak M, Komorska I, Wiśniowski P. Multifractal analysis vehicle’s in-use speed profile for application in driving cycles. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2018; 20 (2): 177–181,http://dx.doi.org/10.17531/ein.2018.2.02.
  • 8. Chatterjee, D., Burkhardt, T., Rappe, T., Güthenke, A. and Weibel, M. (2009). Numerical simulation of DOC+DPF+SCR systems: DOC influence on SCR performance. SAE Int. J. Fuels and Lubricants1,1, 440–451. https://doi.org/10.4271/2008-01-0867.
  • 9. Lafossas, F., Matsuda, Y., Mohammadi, A., Morishima, A. Inoue, M., Kalogirou, M., Koltsakis, G. and Samaras, Z. (2011). Calibration and validation of a diesel oxidation catalyst model: from synthetic gas testing to driving cycle applications. SAE Int. J. Engines4,1, 1586–1606 doi:https://doi.org/10.4271/2011-01-1244.
  • 10. Caneon Kurien and Ajay Kumar Srivastava. Geometrical Modelling and Analysis of Automotive Oxidation Catalysis System for Compliance with Environmental Emission Norms. Nature Environment and Pollution Technology An International Quarterly Scientific Journal. Vol. 17 No. 4 (2018) pp. 1207-1212 p-ISSN: 0972-6268.
  • 11. N. Mladenov, J. Koop, S. Tischer, O. Deutschmann. Modeling of transport and chemistry in channel flows of automotive catalytic converters. Chemical Engineering ScienceVolume 65, Issue 2, 2010, Pages 812-826. https://doi.org/10.1016/j.ces.2009.09.034.
  • 12. Stoll, T., Klingenstein, J., Schneider, A., Bargende, M., Berner, HJ. (2022). AModel Approach to Simulate Exhaust Gas Temperatures of Diesel Oxidation Catalysts. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 22. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-37011-4_26
  • 13. Sreeharsh Nair and Mayank Mittal, 1-D mathematical modeling of a diesel oxidation catalyst for transient hot start drive cycle. 2020IOP Conf. Ser.: Mater.Sci.Eng.912042029. doi10.1088/1757-899X/912/4/042029.
  • 14. Muhammad Sufian , Muhammad Javaid Afzal,, Farah Javaid , Shahzadi Tayyaba, Muhammad Waseem Ashraf4, G. F. Ishraque Toki , M. Khalid Hossain. Catalytic Converter Simulation for Pressure and Velocity Measurement Proceedings of the 8th International Exchange and Innovation Conference on Engineering & Sciences (IEICES 2022) 451. https://doi.org/10.5109/5909132
  • 15. Zhang, Lihua, "Dynamic modeling of the thermal process in diesel oxidation catalytic converters". (2006). Electronic Theses and Dissertations. 1796. https://scholar.uwindsor.ca/etd/1796.
  • 16. M. N. Kabir, Y. Alginahi&K. Islam. Simulation of oxidation catalyst converter for after-treatment in diesel engines. International Journal of Automotive Technologyvolume 16, page s193–199 (2015) doi:10.1007/s12239-015-0021-6.
  • 17. Shifei Ye. Oxidation Catalyst Studies on a Diesel Engine A thesis for the degree of Doctor of Philosophy University of Bath. December 2010. https://purehost.bath.ac.uk/ws/portalfiles/portal.
  • 18. Guanlin Liuet al Research on Influence of Exhaust Characteristics and Control Strategy to DOC-Assisted Active Regeneration of DPF. Processes2021,9(8),1403; https://doi.org/10.3390/pr9081403.
  • 19. Gabor Belleret al. AVL Boost: a powerful tool for research and education May 2021. Journal of Physics Conference Series1935(1):01 2015 doi:10.1088/17426596/1935/1.
  • 20. https://www.scribd.com/document/315219449/03-FIRE-BOOST-Aftertreatment-UsersGuideUploaded by henevilon Jun 09, 2016 (accessVI 2023).
  • 21. Users Guide AVL BOOST v2011.1 Graz, Austria http://www.avl.com. (access06 2023).
  • 22. Koltsakis G. C., Konstantinidis, P.A. and Stamatelos A. M.. “Development and application range of mathematical models for 3-way catalysts” ,Applied Catalysis B. Environmental 12, 1997, 161-191 https://doi.org/10.1016/S0926-3373(96)00073-2.
  • 23. Konstandopoulos A. G., Johnson J. H.: Wall-flow diesel particulate filter –Their pressure drop and collection efficiency, SAE International Paper 890405. https://doi.org/10.4271/890405.
  • 24. Allanson R., Blakeman B., Cooper B.: Optimising the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter (CR-DPF) System. SAE Technical Paper 2002-01-0248. https://doi.org/10.4271/2002-01-0428.
  • 25. Kruczyński S., Hofman P., Kamela W.: The Marking in Process the Competiveness of Reaction and Energy Activation of Passive Stint of Emisson NOXwith Hydrocarbons. PTNSS -2011-SC –085, COMBUSTION ENGINES, 3/2011 (146), Poznań 2011. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-LOD6-0030-0018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2008447b-7771-45af-915a-59781d022ccd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.