PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Filtered integral sliding mode control in a two-mass drive system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents issues related to the application of filtered integral sliding mode control to a two-mass drive system. A classical control structure has been presented and its design procedure is shown in detail. The properties of the classical structure, in which the chattering phenomenon seems to be a big drawback, have been summarized. In order to eliminate this phenomenon, an output low-pass filter has been proposed and the performance of this system has been tested. In order to improve its characteristics, an adaptive low-pass filter has been proposed. The bandwidth of the filter was changed on-line by the fuzzy system according to the current state of the plant. During the steady-states, the bandwidth is low to eliminate chattering effect, and during transients higher in order to ensure the fast dynamics of the plant.
Wydawca
Rocznik
Strony
121--134
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] FU J., WANG L., DU Y., ZHANG J., A robust sliding mode control for nonlinear system with adjustable chattering phenomenon, Variable Structures Systems (VSS), 14th International Workshop, IEEE, 2016, 34-38.
  • [2] BARTOSZEWICZ A., Non-switching reaching law for sliding mode control of discrete time systems, System Theory, Control and Computing (ICSTCC), 17th International Conference, IEEE, 2013, 60-65.
  • [3] LEI Q., WEIDONG Z., Double-loop chattering-free adaptive integral sliding mode control for underwater vehicles, OCEANS 2016, IEEE, Shanghai 2016, 1-6.
  • [4] SHEN C., SHENG Y., ZENG X., LIU X., An improved chattering-free sliding mode control with finite time convergence for reentry vehicle, Guidance, Navigation and Control Conference (CGNCC), IEEE Chinese, 2016, 69-74.
  • [5] HAI W., ZHIHONG M., HUIFANG K., YONG Z., MING Y., ZHENWEJ C., JINCHUAN Z., MANH T., Design and implementation of adaptive terminal sliding-mode control on steer-by-wire equipped road vehicle, IEEE Trans. Ind. Electr., 2016, 63 (9), 5774-5785.
  • [6] FENGJIAO G., XUEMEI R., Extended state observer based adaptive integral sliding mode control for two inertia system, Intelligent Human-Machine Systems and Cybernetics (IHMSC), 7th International Conference, IEEE, 2015, 483-486.
  • [7] TORCHANI B., SELLAMI A., GARCIA G., Saturated sliding mode control for variable speed wind turbine, The 5th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 2014.
  • [8] ORŁOWSKA-KOWALSKA T., KAMIŃSKI M., SZABAT K., Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastic joint, IEEE Trans. Ind. Electr., 2010, 57(4), 1309-1317.
  • [9] BROCK S., Hybrid P-PI sliding mode position and speed controller for variable inertia drive, Przegl. Elektrotechn., 2014, 90(5), 29-34.
  • [10] JINKUN L., XINHUA W., Advanced Sliding Mode Control for Mechanical Systems, Springer, Tsinghua University Press, 2012.
  • [11] DRÓŻDŻ K., Adaptive control of the drive system with elastic coupling using fuzzy Kalman filter with dynamic adaptation of selected coefficients, Maint. Rel., 2015, 17(4), 561-568.
  • [12] FLUGGE-LOTZ I., Discontinuous Automatic Control, Princeton University Press, Princeton, New Jersey, 1953.
  • [13] ITKIS U., Control Systems of Variable Structure, Halsted Press, 1976.
  • [14] POORINEZHAD S., RAKHTALA S.M., Chattering analysis of second order sliding mode algorithms for linear plants with disturbance, Knowledge-Based Engineering and Innovation (KBEI), 2nd International Conference, IEEE, 2015, 101-105.
  • [15] SERKIES P., Comparison of the control methods of electrical drives with an elastic coupling allowing to limit torsional torque amplitude, Maint. Rel., 2017, 19(2), 203-210.
  • [16] SZABAT K., ORLOWSKA-KOWALSKA T., Vibration suppression in a two-mass drive system using PI speed controller and additional feedbacks. Comparative study, IEEE Trans. Ind. Electr., 2007, 54(2), 1193-1206.
  • [17] HUANG Y.J., WAY H.K., Placing all closed loop poles of missile attitude control systems in the sliding mode via the root locus technique, ISA Trans., 2001, 40(4), 333-340.
  • [18] SERKIES P., SZABAT K., Estimation of the state variables of the two-mass system using fuzzy Kalman filter, Ind. Electr. (ISIE), 2013 IEEE International Symposium, 2013, 1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2007997d-3684-4848-8dd3-9bcb47ba11c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.