Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Badanie wpływu kompensacji na stabilność górotworu oraz jakość wydobywanej rudy
Języki publikacji
Abstrakty
The paper presents the study and a functional analysis of requirements of the world metallurgical industry to the quality of underground iron ores at underground mines of Ukraine. There are found dependencies of the impact of the shape and parameters of compensation spaces on their stability and broken ore quality indicators. It is proved that a vertical trapezoidal compensation room possesses the highest stability and is stable within the range of all the considered depths, even in ores with hardness of 3–5 points. Less atabiity is demonstrated by a vertical compensation room of a vaulted shape with minor falls in the abutment of the room vault in ores with hardness of 3–5 points at the depth of 2000 m, and a tent-shaped one where falls of varying intensity occur in the lower part of inclined exposures of the tent in ores with hardness of 3–5 points at the depth of 1750 m or more. The horizontal compensation room is of the lowest stability; falls occur in ores with hardness of 3–5 points at the depth of 1400 m, and at the depths of 1750–2000 m it remains stable only in harder ores. It is established that the use of compensation rooms of high stability makes it possible to achieve their maximum volume, increase the amount of pure ore extracted, reduce its dilution, enhance the quality of the mined ore mass and concequently increase its price and competitiveness of marketable products.
Artykuł przedstawia studium i analizę funkcjonalną wymagań światowego przemysłu metalurgicznego co do jakości rud żelaza w podziemnych kopalniach Ukrainy. Stwierdzono zależności wpływu kształtu i parametrów przestrzeni kompensacyjnych na ich stateczność i wskaźniki jakości rudy. Udowodniono, że komora wyrównawcza w kształcie trapezu pionowego charakteryzuje się największą stabilnością i jest stabilna w zakresie wszystkich rozważanych głębokości, nawet w rudach o twardości 3–5 punktów. Mniejszą stateczność wykazuje komora kompensacji pionowej o kształcie sklepionym z niewielkimi spadkami w przyczółku sklepienia komory w rudach o twardości 3–5 punktów na głębokości 2000 m. Komora z opadami o rożnym natężeniu występuje w dolnej części nachylonych odsłonięć namiotu w rudach o twardości 3–5 punktów na głębokości 1750 m lub większej. Pomieszczenie kompensacji poziomej ma najmniejszą stateczność; spadki występują w rudach o twardości 3–5 punktów na głębokości 1400 m, a na głębokościach 1750–2000 m pozostają stabilne tylko w rudach twardszych. Stwierdzono, że zastosowanie komór kompensacyjnych o dużej stabilności umożliwia osiągnięcie ich maksymalnej objętości, zwiększenie ilości wydobywanej czystej rudy, zmniejszenie jej rozrzedzenia, poprawę jakości wydobywanej masy rudy, a co za tym idzie, wzrost jej ceny i konkurencyjności rynkowej.
Czasopismo
Rocznik
Tom
Strony
129--135
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Kryvyi Rih National University, Faculty of Mining and Metallurgy,11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
autor
- Kryvyi Rih National University, Faculty of Mining and Metallurgy,11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
autor
- Kryvyi Rih National University, Faculty of Mining and Metallurgy,11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
autor
- Kryvyi Rih National University, Faculty of Mining and Metallurgy,11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
autor
- Kryvyi Rih National University, Faculty of Mining and Metallurgy,11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
Bibliografia
- 1. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. (2013). Influence of rock massif stress-strain state on uranium ore breaking technology. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 11–16.
- 2. Stupnik, N., Kalinichenko, V., Kalinichenko, E., Muzika, І., Fed'ko, М., & Pis'menniy, S. (2015). The research of strain-stress state of magnetite quartzite deposit massif in the condition of mine “Gigant-Gliboka” of central iron ore enrichment works (CGOK). Metallurgical and mining industry, 7. 377-382.
- 3. Sashurin, A.D., & Belikov, V.Ye. (2003). Problemy ustoychivosti podzemnykh i nazemnykh cooruzheniy v zone tektonicheskikh narusheniy [Problems of stability of underground and surface structures in the zone of tectonic disturbances]. Voprosy osusheniya, gornopromyshlennoy geologii i okhrany nedr: Materialy mezhdunarodnogo simpoziuma, 206-216.
- 4. Baluta, A.M., & Borisenko, V.G. (1972). Prognoznaya otsenka fiziko-mekhanicheskikh svoystv gornykh porod Krivbassa [Predictive assessment of the physical and mechanical properties of rocks of Kryvbas]. (Kyiv: Naukova dumka).
- 5. Nasonov, I.D. (1978). Modelirovaniye gornykh protsessov [Modeling of mining processes]. (Moscow: Nedra).
- 6. Kuznetsov, G.N., Bud'ko, M.N., & Filippova, A.A. (1959). Izucheniye proyavleniy gornogo davleniya na modelyakh [Study of manifestations of rock pressure on models]. (Moscow: Ugletekhizdat).
- 7. Kirpichev, M.V. (1953). Teoriya podobiya [Similarity theory]. (Moscow: Akademiya Nauk SSSR).
- 8. Glushikhin, F.P. (1991). Modelirovaniye v geomekhanike [Modeling in geomechanics]. (Moscow: Nedra).
- 9. Stupnik, N., & Kalinichenko, V. (2012). Parameters of shear zone and methods of their conditions control at underground mining of steep-dipping iron ore deposits in Kryvyi Rig basin. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 15–17.
- 10. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. 2013. Prospects of application of TNT-free explosives in ore deposites developed by uderground mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 44–48.
- 11. Stupnik, M.I., Kalinichenko, V.O., Fedko, M.B., & Kalinichenko, O.V. (2018). Investigation into crown stability at underground leaching of uranium ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 20–25.
- 12. Stupnik, M., & Kalinichenko, V. (2013). Magnetite quartzite mining is the future of Kryvyi Rig iron ore basin. Annual Scientific-Technical Colletion - Mining of Mineral Deposits 2013, 49–52
- 13. Stupnik, M.I., Kalinichenko, O.V., & Kalinichenko, V.O. (2012). Economic evaluation of risks of possible geomechanical violations of original ground in the fields of mines of Kryvyi rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 126–130.
- 14. Stupnik, M., Kalinichenko, V., Fedko, M., Kalinichenko, O., Pukhalskyi, V., & Kryvokhin, B. (2019). Investigation of the dust formation process when hoisting the uranium ores with a bucket. Mining of Mineral Deposits, 13(3), 96–103. https://doi.org/10.33271/mining13.03.096.
- 15. Kalinichenko, V., Dolgikh, O., Dolgikh, L., & Pysmennyi, S. (2020). Choosing a camera for mine surveying of mining enterprise facilities using unmanned aerial vehicles. Mining of Mineral Deposits, 14(4), 31-39. https://doi. org/10.33271/mining14.04.031.
- 16. Stupnik, M.I., Kalinichenko, O.V., Kalinichenko, V.O. 2012. Technical and economic study of self-propelled machinery application expediency in mines of krivorozhsky bassin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 39–42.
- 17. Pysmennyi, S., Chukharev, S., Khavalbolot, K., Bondar, I., & Ijilmaa, J. (2021). Enhancement of the technology of mining steep ore bodies applying the “floating” crown. E3S Web of Conferences, 280, 08013. https://doi. org/10.1051/e3sconf/202128008013.
- 18. Pysmennyi, S., Chukharev, S., Kyelgyenbai, K., Mutambo, V., & Matsui, A. (2022). Iron ore underground mining under the internal overburden dump at the PJSC “Northern GZK”. IOP Conference Series: Earth and Environmental Science, 1049(1), 012008. https://doi.org/10.1088/1755-1315/1049/1/012008.
- 19. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The infuence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91. https://doi.org/10.17794/rgn.2019.1.8.
- 20. Bazaluk, O., Petlovanyi, M., Lozynskyi, V., Zubko, S., Sai, K., & Saik, P. (2021). Sustainable Underground Iron Ore Mining in Ukraine with Backfilling Worked-Out Area. Sustainability, 13(2), 834. https://doi.org/10.3390/su13020834.
- 21. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability Assessment of Hanging Wall Rocks during Underground Mining of Iron Ores. Minerals, 11(8), 858. https://doi.org10.3390/min11080858.
- 22. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, 10, 852591. https://doi.org/10.3389/fenvs.2022.852591.
- 23. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 23-32. https://doi.org/10.17794/rgn.2020.2.3.
- 24. Lyashenko, V., Andreev, B., & Dudar, T. (2022). Substantiation of mining-technical and environmental safety of underground mining of complex-structure ore deposits. Mining of Mineral Deposits, 16(1), 43-51. https://doi. org/10.33271/mining16.01.043.
- 25. Issayeva, L., Togizov, K., Duczmal-Czernikiewicz, A., Kurmangazhina, M., & Muratkhanov, D. (2022). Ore-controlling factors as the basis for singling out the prospective areas within the Syrymbet rare-metal deposit, Northern Kazakhstan. Mining of Mineral Deposits, 16(2), 14-21. https://doi.org/10.33271/mining16.02.014.
- 26. Takhanov, D., Muratuly, B., Rashid, Z., & Kydrashov, A. (2021). Geomechanics substantiation of pillars development parameters in case of combined mining the contiguous steep ore bodies. Mining of Mineral Deposits, 15(1), 50-58. https://doi.org/10.33271/mining15.01.050.
- 27. Pysmenniy, S., Shvager, N., Shepel, O. Kovbyk, K., & Dolgikh O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, 166, 02006. https://doi. org/10.1051/e3sconf/202016602006.
- 28. Kyelgyenbai K., Pysmennyi S., Chukharev S., Purev B., & Jambaa I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, (280), 08001. https://doi.org/10.1051/e3sconf/202128008001.
- 29. Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029. https://doi.org/10.1088/1755-1315/1049/1/012029.
- 30. Panchenko, V., Sobko, B., Lotous, V., Vinivitin, D., & Shabatura, V. (2021). Openwork scheduling for steep-grade iron-ore deposits with the help of near-vertical layers. Mining of Mineral Deposits, 15(1), 87-95. https://doi. org/10.33271/mining15.01.087.
- 31. Zeylik, B., Arshamov, Y., Baratov, R., & Bekbotayeva, A. (2021). New technology for mineral deposits prediction to identify prospective areas in the Zhezkazgan ore region. Mining of Mineral Deposits, 15(2), 134-142. https://doi. org/10.33271/mining15.02.134.
- 32. Rysbekov, K., Bitimbayev, M., Akhmetkanov, D., Yelemessov, K., Barmenshinova, M., Toktarov, A., & Baskanbayeva, D. (2022). Substantiation of mining systems for steeply dipping low-thickness ore bodies with controlled continuous stope extraction. Mining of Mineral Deposits, 16(2), 64-72. https://doi.org/10.33271/mining16.02.064.
- 33. Shvaher N., Komisarenko, T., Chukharev, S., & Panova, S. (2019). E3S Web of Conferences, 123, 01043. https://doi. org/10.1051/e3sconf/201912301043.
- 34. Panayotov, V., Panayotova, M., & Chukharev, S. (2020). Recent studies on germanium-nanomaterials for LIBs anodes. E3S Web of Conferences, 166, 06012. https://doi.org/10.1051/e3sconf/202016606012.
- 35. Peremetchyk, A., Kulikovska, O., Shvaher, N., Chukharev, S., Fedorenko, S., Moraru, R., & Panayotov, V. (2022). Predictive geometrization of grade indices of an iron-ore deposit. Mining of Mineral Deposits, 16(3), 67-77. https:// doi.org/10.33271/mining16.03.067.
- 36. Sakhno, S., Yanova, L., Pischikova, O.,& Chukharev, S. (2020). Study of the influence of properties of dusty ferromagnetic additives on the increase of cement activity. E3S Web of Conferences, 166, 06002. https://doi.org/10.1051/ e3sconf/202016606002.
- 37. Khomenko, O., Kononenko, M., Kovalenko, I., & Astafiev, D. (2018). Self-regulating roof-bolting with the rock pressure energy use. E3S Web Of Conferences, 60, 00009. http://doi.org/10.1051/e3sconf/20186000009.
- 38. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining - Proceedings of the School of Underground Mining, 193-197. http://doi. org/10.1201/b11329-32.
- 39. Khomenko, O., Tsendjav, L., Kononenko, M., & Janchiv, B. (2017). Nuclear-and-fuel pow-er industry of Ukraine: production, science, education. Mining Of Mineral Deposits, 11(4), 86-95. http://doi.org/10.15407/mining11.04.086.
- 40. Khomenko, O., Kononenko, M., & Lyashenko, V. (2018). Safety Improving of Mine Preparation Works at the Ore Mines. Occupational Safety In Industry, 5, 53-59. http://doi.org/10.24000/0409-2961-2018-5-53-59.
- 41. Kononenko M., Khomenko O., Kovalenko I., & Savchenko M. (2021). Control of density and velocity of emulsion explosives detonation for ore breaking. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 69-75. https:// doi.org/10.33271/nvngu/2021-2/069.
- 42. Kononenko M., & Khomenko O. (2021). New theory for the rock mass destruction by blasting. Mining of Mineral Deposits, 15(2), 111-123. https://doi.org/10.33271/mining15.02.111.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2006237c-f306-4680-82b6-edc85fdcf10e