PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosorption of Lead and Copper by Epiphytic Rhizobacterial Species Isolated from Lepironia articulata and Scirpus grossus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, biosorption potential of nine epiphytic bacteria isolated from the rhizosphere of Lepironia articulata and Scirpus grossus were assessed. Identification of the isolated epiphytic rhizobacteria using 16S rRNA analysis showed species belonging to the four genera of Bacillus, Enterobacter, Aeromonas, and Chromobacterium. Batch biosorption studies were carried out to assess the capacity of the isolated bacteria to act as Pb and Cu biosorbents. Different initial concentrations of the two heavy metals (50, 100, 200, 300, and 400 ppm) were used to determine the ability of the biosorbent to reach a tolerance level and then calculate the percentage of biosorption with respect to 0.1 g dry weight. Initial concentration of Pb and Cu exposed showed that the isolated bacteria have high tolerance up to 400 ppm. Bacteria prefer Pb ions over Cu, which is indicated by higher removal of Pb in all tested reactors. Bacillus sp. (coded Sc1) showed the highest biosorption capacity with 100% Pb and 97% Cu removal.
Rocznik
Strony
44--61
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
  • Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
  • Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
  • Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, CN Delft 2628, the Netherlands
Bibliografia
  • 1. Abedinzadeh M., Etesami H., Alikhani H.A. (2019) Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol Reports, 21.
  • 2. Ahmed M.F., Mokhtar M. Bin, Alam L., et al. (2020) Investigating the status of cadmium, chromium and lead in the drinking water supply chain to ensure drinking water quality in malaysia. Water (Switzerland) 12:1–26.
  • 3. Al-Ajalin F.A.H., Abdullah S.R.S., Idris M., et al. (2022) Removal of ammonium, phosphate, and COD by bacteria isolated from Lepironia articulata and Scirpus grossus root system. Int J Environ Sci Technol 19:11893–11904.
  • 4. Alessandrello M.J., Vullo D.L. (2018) Biotreatment Of Cr(VI) - Containing Wastewater Mediated By Indigenous Bacteria. Environ Eng Manag J, 17: 2685–2694.
  • 5. Arliyani I, Tangahu BV, Mangkoedihardjo S, et al. (2023) Enhanced leachate phytodetoxification test combined with plants and rhizobacteria bioaugmentation. Heliyon 9.
  • 6. Ayele A., Godeto Y.G. (2021) Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. J Chem, 2021:1–21.
  • 7. Bahadur A., Ahmad R., Afzal A., et al. (2017) The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.). Chemosphere, 179:112–119.
  • 8. Buhari J, Hasan HA, Kurniawan SB, et al. (2023) Future and challenges of co-biofilm treatment on ammonia and Bisphenol A removal from wastewater. J Water Process Eng 54:103969.
  • 9. Lima e Silva A.A.D., Carvalho M.A.R., de Souza S.A., Dias P.M.T., Silva Filho R.G.D., Saramago C.S., Bento C.A., Hofer E. (2013) Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Brazilian Journal Microbiol, 43:1620–1631.
  • 10. Chellaiah E.R. (2018) Cadmium (Heavy Metals) Bioremediation by Pseudomonas aeruginosa: a Minireview. Appl Water Sci, 8:154.
  • 11. Chitraprabha K., Sathyavathi S. (2018) Phytoextraction of chromium from electroplating effluent by Tagetes erecta (L.). Sustain Environ Res, 28:128–134.
  • 12. Çolak F., Atar N., Yazicioĝlu D., Olgun A. (2011) Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem Eng J, 173:422–428.
  • 13. Costa A.C.A. da, Duta F.P. (2001) Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis. Brazilian Journal Microbiol, 32:1–5.
  • 14. de Freitas G.R., da Silva M.G.C., Vieira M.G.A. (2019) Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents. Environ Sci Pollut Res, 26:19097–19118.
  • 15. El-Deeb B. (2009) Plasmid Mediated Tolerance and Removal of Heavy Metals by Enterobacter sp. Am J Biochem Biotechnol ,5:47–53
  • 16. Gong G., Li H. (2011) Removal of Lead and Copper Ions from Contaminated Water by Bacterial Strain. In: 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. IEEE, pp 2186–2188
  • 17. Hasan S.H., Srivastava P., Talat M. (2010) Biosorption of lead using immobilized Aeromonas hydrophila biomass in up flow column system: Factorial design for process optimization. J Hazard Mater, 177:312–322.
  • 18. He C., Gu L., Xu Z., et al. (2020) Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems. Environ Chem Lett, 18:561–576.
  • 19. Imron M.F., Kurniawan S.B., Abdullah S.R.S. (2021) Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustain Environ Res, 31:14.
  • 20. Imron M.F., Kurniawan S.B., Titah H.S. (2019a) Potential of bacteria isolated from diesel-contaminated seawater in diesel biodegradation. Environ Technol Innov 14:100368.
  • 21. Imron M.F., Kurniawan S.B., Ismail N.I., Abdullah S.R.S. (2020) Future challenges in diesel biodegradation by bacteria isolates: A review. J Clean Prod, 251:119716.
  • 22. Imron M.F., Kurniawan S.B., Soegianto A. (2019b) Characterization of mercury-reducing potential bacteria isolated from Keputih non-active sanitary landfill leachate, Surabaya, Indonesia under different saline conditions. J Environ Manage, 241:113–122.
  • 23. Ismail N.I., Abdullah S.R.S., Idris M., et al. (2020) Applying rhizobacteria consortium for the enhancement of Scirpus grossus growth and phytoaccumulation of Fe and Al in pilot constructed wetlands. J Environ Manage, 267:110643.
  • 24. Iyer A., Mody K., Jha B., (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50:340–343.
  • 25. Jafari S.A., Cheraghi S., Mirbakhsh M., et al. (2015) Employing Response Surface Methodology for Optimization of Mercury Bioremediation by Vibrio parahaemolyticus PG02 in Coastal Sediments of Bushehr, Iran. CLEAN - Soil, Air, Water, 43:118–126.
  • 26. Jo atilde o MSL, Jos eacute OP, Ieda H ecirc ncio B, et al. (2016) Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. African J Biotechnol, 15:1217–1223.
  • 27. Kanamarlapudi S.L.R.K., Chintalpudi V.K., Muddada S. (2018) Application of biosorption for removal of heavy metals from wastewater. In: Biosorption. InTech
  • 28. Kurniawan S.B., Abdullah S.R.S., Othman A.R., et al. (2021) Isolation and characterisation of bioflocculant-producing bacteria from aquaculture effluent and its performance in treating high turbid water. J Water Process Eng, 42:102194.
  • 29. Kurniawan S.B., Imron M.F. (2019a) The effect of tidal fluctuation on the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Environ Technol Innov, 15:100420.
  • 30. Kurniawan S.B., Imron M.F. (2019b) Seasonal variation of plastic debris accumulation in the estuary of Wonorejo River, Surabaya, Indonesia. Environ Technol Innov, 16:100490.
  • 31. Kurniawan S.B., Imron M.F., Abdullah S.R.S., et al. (2022a) Treatment of real aquaculture effluent using bacteria-based bioflocculant produced by Serratia marcescens. J Water Process Eng, 47:102708.
  • 32. Kurniawan S.B., Imron M.F., Sługocki Ł., et al. (2022b) Assessing the effect of multiple variables on the production of bioflocculant by Serratia marcescens: Flocculating activity, kinetics, toxicity, and flocculation mechanism. Sci Total Environ, 836:155564.
  • 33. Kurniawan S.B.S., Ramli N.N., Said N.S.M., et al. (2022c) Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon, 8:e08995.
  • 34. Lu W-B., Shi J-J., Wang C-H., Chang J-S. (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater, 134:80–86.
  • 35. Ma Y., Rajkumar M., Oliveira R.S., et al. (2019) Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater, 379:120813.
  • 36. Mgbemena I.C., Nnokwe J.C., Adjeroh L. a, Onyemekara N.N. (2012) Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics. Curr Res J Biol Sci, 4:551–556.
  • 37. Mohammed E., Mohammed T., Mohammed A. (2017) Optimization of an acid digestion procedure for the determination of Hg, As, Sb, Pb and Cd in fish muscle tissue. MethodsX, 4:513–523.
  • 38. Muhamad M.H., Abdullah S.R.S., Hasan H.A., et al. (2021) A hybrid treatment system for water contaminated with pentachlorophenol: Removal performance and bacterial community composition. J Water Process Eng, 43:.
  • 39. Murthy S., Bali G., Sarangi S.K. (2012) Biosorption of Lead by Bacillus cereus Isolated from Industrial Effluents. Res Artic Br Biotechnol J, 2:73–84
  • 40. Nayak S,. Rangabhashiyam S., Balasubramanian P., Kale P. (2020) A review of chromite mining in Sukinda Valley of India: impact and potential remediation measures. Int J Phytoremediation, 22:804–818.
  • 41. Nourbakhsh M.N. (2002) Biosorption of Cr6+, Pb2+ and Cu2+ ions in industrial waste water on Bacillus sp. Chem Eng J 85:351–355.
  • 42. Odokuma L.O. (2009) Effect of culture age and biomass concentration on heavy metal uptake by three axenic bacterial cultures. Adv Nat Appl Sci 3:339–350
  • 43. Okoro H.K., Pandey S., Ogunkunle C.O., et al. (2022) Nanomaterial-based biosorbents: Adsorbent for efficient removal of selected organic pollutants from industrial wastewater. Emerg Contam 8:46–58.
  • 44. Ölmezoğlu E., Herand B.K., Öncel M.S., et al. (2012) Copper bioremoval by novel bacterial isolates and their identification by 16S rRNA gene sequence analysis. Turkish J Biol.
  • 45. Oves M., Khan M.S., Zaidi A. (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci, 20:121–129.
  • 46. Pan J., Liu R., Tang H. (2007) Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. J Environ Sci, 19:403–408.
  • 47. Pattnaik S., Dash D., Mohapatra S., et al. (2020) Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere 240:124895.
  • 48. Pérez Silva R.M., Ábalos Rodríguez A., Gómez Montes De Oca J.M., Cantero Moreno D. (2009) Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technol, 100:1533–1538.
  • 49. Pradhan A.A., Levine A.D. (1995) Microbial biosorption of copper and lead from aqueous systems. Sci Total Environ 170:209–220.
  • 50. Pradhan J.K., Kumar S. (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag Res 30:1151–1159.
  • 51. Purwanti I.F., Obenu A., Tangahu B.V., et al. (2020) Bioaugmentation of Vibrio alginolyticus in phytoremediation of aluminium-contaminated soil using Scirpus grossus and Thypa angustifolia. Heliyon, 6:e05004.
  • 52. Purwanti I.F., Abdullah S.R.S., Hamzah A., et al. (2023) Maximizing diesel removal from contaminated sand using Scirpus mucronatus and assessment of rhizobacteria addition effect. Heliyon, 9:e21737.
  • 53. Puyen Z.M., Villagrasa E., Maldonado J., et al. (2012) Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour Technol, 126:233–237.
  • 54. Raja C.E., Omine K. (2012) Characterization of boron resistant and accumulating bacteria Lysinibacillus fusiformis M1, Bacillus cereus M2, Bacillus cereus M3, Bacillus pumilus M4 isolated from former mining site, Hokkaido, Japan. J Environ Sci Heal Part A, 47:1341–1349.
  • 55. Raklami A., Tahiri A. ilah, Bechtaoui N., et al. (2021) Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. J Environ Sci (China), 99:210–221.
  • 56. Redha A.A. (2020) Removal of heavy metals from aqueous media by biosorption. Arab J Basic Appl Sci, 27:183–193.
  • 57. Rodríguez-Tirado V., Green-Ruiz C., Gómez-Gil B. (2012) Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: Kinetic and equilibrium studies. Chem Eng J, 181–182:352–359.
  • 58. Said N.S.M., Kurniawan S.B., Abdullah S.R.S., et al. (2021) Competence of Lepironia articulata in eradicating chemical oxygen demand and ammoniacal nitrogen in coffee processing mill effluent and its potential as green straw. Sci Total Environ, 799:149315.
  • 59. Sethuraman P., Kumar M.D. (2011) Biosorption Kinetics of Cu (II) Ions Removal from Aqueous Solution using Bacteria. Pakistan J Biol Sci, 14:327–335.
  • 60. Shahbudin N.R., Kamal N.A. (2021) Establishment of material flow analysis (MFA) for heavy metals in a wastewater system. Ain Shams Eng J, 12:1407–1418.
  • 61. Shin M-N., Shim J,, You Y,, et al. (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater, 199–200:314–320.
  • 62. Titah H.S., Abdullah S.R.S., Idris M., et al. (2018) Arsenic Resistance and Biosorption by Isolated Rhizobacteria from the Roots of Ludwigia octovalvis. Int J Microbiol, 2018:1–10.
  • 63. Tunali S., Çabuk A., Akar T. (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J, 115:203–211.
  • 64. Webb J. (1998) Ability of Immobilized Cyanobacteria to Remove Metal Ions From Solution and Demonstration of the Presence of Metallothionein Genes in Various Strains. J Hazard Subst Res 1
  • 65. Zaki S., Farag S. (2010) Isolation and molecular characterization of some copper biosorped strains. Int J Environ Sci Technol, 7:553–560.
  • 66. Zhang X., Chen L., Liu X., et al. (2014) Synergic degradation of diesel by Scirpus triqueter and its endophytic bacteria. Environ Sci Pollut Res, 21:8198–8205.
  • 67. Zhimiao Z., Xiao Z., Zhufang W., et al. (2019) Enhancing the pollutant removal performance and biological mechanisms by adding ferrous ions into aquaculture wastewater in constructed wetland. Bioresour Technol 293
  • 68. Zolti A., Green S.J., Ben Mordechay E., et al. (2019) Root microbiome response to treated wastewater irrigation. Sci Total Environ 655:899–907.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20008b23-4399-4e07-9718-dd0008e3115f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.