PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of genetic algorithm for double-lap adhesive joint design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of optimal design of symmetrical double-lap adhesive joint is considered. It is assumed that the main plate has constant thickness, while the thickness of the doublers can vary along the joint length. The optimization problem consists in finding optimal length of the joint and an optimal cross-section of the doublers, which provide minimum structural mass at given strength constraints. The classical Goland-Reissner model was used to describe the joint stress state. A corresponding system of differential equations with variable coefficients was solved using the finite difference method. Genetic optimization algorithm was used for numerical solution of the optimization problem. In this case, Fourier series were used to describe doubler thickness variation along the joint length. This solution ensures smoothness of the desired function. Two model problems were solved. It is shown that the length and optimal shape of the doubler depend on the design load.
Rocznik
Tom
Strony
27--42
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
  • National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
  • National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
  • National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
Bibliografia
  • [1] L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, and J.K. Spelt. Analytical models of adhesively bonded joints. Part I: Literature survey. International Journal of Adhesion and Adhesives, 29(3):319–330, 2009. doi: 10.1016/j.ijadhadh.2008.06.005.
  • [2] E.H. Wong and J. Liu. Interface and interconnection stresses in electronic assemblies – A critical review of analytical solutions. Microelectronics Reliability, 79:206–220, 2017. doi: 10.1016/j.microrel.2017.03.010.
  • [3] S. Budhe, M.D. Banea, S. de Barros, and L.F.M. da Silva. An updated review of adhesively bonded joints in composite materials. International Journal of Adhesion and Adhesives, 72:30–42, 2017. doi: 10.1016/j.ijadhadh.2016.10.010.
  • [4] K.P. Barakhov and I.M. Taranenko. Influence of joint edge shape on stress distribution in adhesive film. In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (eds) Integrated Computer Technologies in Mechanical Engineering – 2021. ICTM 2021. Lecture Notes in Networks and Systems, 367:123–132, Springer, Cham, 2022. doi: 10.1007/978-3-030-94259-5_12.
  • [5] H. Lee, S. Seon, S. Park, R. Walallawita, and K. Lee. Effect of the geometric shapes of repair patches on bonding strength. The Journal of Adhesion, 97(3):1–18, 2019. doi: 10.1080/00218464.2019.1649660.
  • [6] F. Ramezani, M.R. Ayatollahi, A. Akhavan-Safar, and L.F.M. da Silva. A comprehensive experimental study on bi-adhesive single lap joints using DIC technique. International Journal of Adhesion and Adhesives, 102:102674, 2020. doi: 10.1016/j.ijadhadh.2020.102674.
  • [7] Ya.S. Karpov. Jointing of high-loaded composite structural components. Part 2. Modeling of stress-strain state. Strength of Materials, 38(5):481–491, 2006. doi: 10.1007/s11223-006-0067-9.
  • [8] J. Kupski and S. Teixeira de Freitas. Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures. Composite Structures, 268:113923, 2021. doi: 10.1016/j.compstruct.2021.113923.
  • [9] S. Amidi and J. Wang. An analytical model for interfacial stresses in double-lap bonded joints. The Journal of Adhesion, 95(11):1031–1055, 2018. doi: 10.1080/00218464.2018.1464917.
  • [10] H. Kumazawa and T. Kasahara. Analytical investigation of thermal and mechanical load effects on stress distribution in adhesive layer of double-lap metal-composite bonded joints. Advanced Composite Materials, 28(4):425–444, 2019. doi: 10.1080/09243046.2019.1575028.
  • [11] S. Kurennov and N. Smetankina. Stress-strain state of a double lap joint of circular form. Axisymmetric model. In: M. Nechyporuk, V. Pavlikov D. Kritskiy (eds) Integrated Computer Technologies in Mechanical Engineering – 2021. ICTM 2021. Lecture Notes in Networks and Systems, 367:36–46, Springer, Cham, 2022. doi: 10.1007/978-3-030-94259-5_4.
  • [12] S. E. Stapleton, B. Stier, S. Jones, A. Bergan, I. Kaleel, M. Petrolo, E. Carrera, and B.A. Bednarcyk. A critical assessment of design tools for stress analysis of adhesively bonded double lap joints. Mechanics of Advanced Materials and Structures, 28(8):791–811, 2019. doi: 10.1080/15376494.2019.1600768.
  • [13] R.H. Kaye and M. Heller. Through-thickness shape optimisation of bonded repairs and lap-joints. I nternational Journal of Adhesion and Adhesives, 22(1):7–21, 2002. doi: 10.1016/s0143-7496(01)00029-x.
  • [14] S. Kurennov, K. Barakhov, I. Taranenko, and V. Stepanenko. A genetic algorithm of optimal design of beam at restricted sagging. Radioelectronic and Computer Systems, 1:83–91, 2022. doi: 10.32620/reks.2022.1.06.
  • [15] V.S. Symonov, I.S. Karpov, and J. Juračka. Optimization of a panelled smooth composite shell with a closed cross-sectional contour by using a genetic algorithm. Mechanics of Composite Materials, 49(5):563–570, 2013. doi: 10.1007/s11029-013-9372-0.
  • [16] N.S. Kulkarni, V.K. Tripathi. Variable thickness approach for finding minimum laminate thickness and investigating effect of different design variables on its performance. Archive of Mechanical Engineering, 65(4):527–551, 2018. doi: 10.24425/ame.2018.125441.
  • [17] H. Ejaz, A. Mubashar, I.A. Ashcroft, E. Uddin, and M. Khan. Topology optimisation of adhesive joints using non-parametric methods. International Journal of Adhesion and Adhesives, 81:1–10, 2018. doi: 10.1016/j.ijadhadh.2017.11.003.
  • [18] H.L. Groth and P. Nordlund. Shape optimization of bonded joints. International Journal of Adhesion and Adhesives, 11(4):204–212, 1991. doi: 10.1016/0143-7496(91)90002-y.
  • [19] R.Q. Rodríguez, R. Picelli, P. Sollero, and R. Pavanello. Structural shape optimization of bonded joints using the ESO method and a honeycomb-like mesh. J ournal of Adhesion Science and Technology, 28(14-15):1451–1466, 2014. doi: 10.1080/01694243.2012.698112.
  • [20] E.G. Arhore, M. Yasaee, and I. Dayyani. Comparison of GA and topology optimization of adherend for adhesively bonded metal composite joints. International Journal of Solids and Structures, 226-227:111078, 2021. doi: 10.1016/j.ijsolstr.2021.111078.
  • [21] S. Kumar, and de A. de Tejada Alvarez. Modeling of geometrically graded multi-material single-lap joints. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. doi: 10.2514/6.2015-1885.
  • [22] S.S. Kurennov: Refined mathematical model of the stress state of adhesive lap joint: experimental determination of the adhesive layer strength criterion. Strength of Materials, 52:779–789, 2020. doi: 10.1007/s11223-020-00231-5.
  • [23] P. Zou, J. Bricker, and W. Uijttewaal. Optimization of submerged floating tunnel cross section based on parametric Bézier curves and hybrid backpropagation – genetic algorithm. Marine Structures, 74:102807, 2020. doi: 10.1016/j.marstruc.2020.102807.
  • [24] O. Coskun and H.S.Turkmen. Multi-objective optimization of variable stiffness laminated plates modeled using Bézier curves. Composite Structures, 279:114814, 2022. doi: 10.1016/j.compstruct.2021.114814.
  • [25] S. Kumar and P.C. Pandey. Behaviour of bi-adhesive joints. Journal of Adhesion Science and Technology, 24(7):1251–1281, 2010. doi: 10.1163/016942409x12561252291982.
  • [26] Ö. Öz and H. Özer. On the von Mises elastic stress evaluations in the bi-adhesive single-lap joint: a numerical and analytical study. Journal of Adhesion Science and Technology, 28(21):2133–2153, 2014. doi: 10.1080/01694243.2014.948110.
  • [27] E. Selahi. Elasticity solution of adhesive tubular joints in laminated composites with axial symmetry. Archive of Mechanical Engineering, 65(3):441–456, 2018. doi: 10.24425/124491.
  • [28] K. Barakhov, D. Dvoretska, and O. Poliakov. One-dimensional axisymmetric model of the stress state of the adhesive joint. In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (eds) I ntegrated Computer Technologies in Mechanical Engineering – 2020. ICTM 2020. Lecture Notes in Networks and Systems, 188:310–319, Springer, Cham, 2021. doi: 10.1007/978-3-030-66717-7_26.
  • [29] S. Kurennov, N. Smetankina, V. Pavlikov, D. Dvoretskaya, V. Radchenko. Mathematical model of the stress state of the antenna radome joint with the load-bearing edging of the skin cutout. In: D.D. Cioboată, (ed.) International Conference on Reliable Systems Engineering (ICoRSE) – 2021. ICoRSE 2021. Lecture Notes in Networks and Systems, 305:287–295, Springer, Cham, 2022. doi: 10.1007/978-3-030-83368-8_28.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fffc55b-6f0c-45f0-9ddd-6f248387fecd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.