PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Preparation and Performance of CL-20-based Ultraviolet-curable High-explosive Ink and Its Application in Rigid Explosive Networks by Direct Ink Writing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To improve the groove charge consistency and density and to reduce the initiation synchronicity error of a rigid multi-point initiation explosive network, a CL-20-based ultraviolet (UV)-curable high-explosive ink, comprising 42 wt.% sub-micron CL-20, a 55.4 wt.% binder system (including 2.0 wt.% NC and 53.4 wt.% butyl acetate), and 2.6 wt.% UV-curable resin, based on direct ink writing (DIW) technology, was prepared. The properties of the composite sample deposited via DIW were characterized. The results indicated that the sample had good uniformity, with few defects, and a critical detonation size of around 1.5×0.283 mm. A six-point initiation explosive network was designed for the integration of DIW technology and precise press-loading of the charge. The network featured six pre-pressed booster pellets with the same charge density (ρ0 = 1.89 g·cm−3, 95.8% of theoretical maximum density) as the output end charges, and a groove channel charged by DIW and press-loading. This procedure increased the density of the booster charge in the groove channels to 1.890 g·cm−3, effectively improved the consistency of the charge density between the groove channels and the output ends and lowered the initiation synchronicity error of the network to 62 ns. The network can initiate a jetting projectile charge (JPC) with good shape and small lateral offset, implying that the network initiation capability and synchronization meet the operational requirements of JPC shaped charges.
Rocznik
Strony
86--111
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • ZNDY Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • ZNDY Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • ZNDY Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
autor
  • ZNDY Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
Bibliografia
  • [1] Xu, W.L.; Wang, C.; Chen, D.P. Formation of a Bore-center Annular Shaped Charge and Its Penetration into Steel Targets. Int. J. Impact. Eng. 2019, 127: 122-134.
  • [2] Xu, W.L.; Wang, C.; Chen, D.P. The Jet Formation and Penetration Capability of Hypervelocity Shaped Charges. Int. J. Impact. Eng. 2019, 132: 103337.
  • [3] Ellis, J. Shaped-charge with Simultaneous Multi-point Initiation of Explosives. Patent US 5479860, 1996.
  • [4] Daniels, A.S.; Baker, E.L.; Vuong, T.H.; Chin, C.L.; Fuchs, B.F.; Defisher, S.E. Selectable Initiation Shaped Charges. 20th Int. Symp. on Ballistics, Florida, USA, 2002, 679-684.
  • [5] Li, R.; Li, W.B.; Wang, X.M.; Li, W.B. Effects of Control Parameters of Threepoint Initiation on the Formation of an Explosively Formed Projectile with Fins. Shock Waves 2018, 28(2): 191-204.
  • [6] Li, W.B.; Wang, X.M.; Li, W.B. The Effect of Annular Multi-point Initiation on the Formation and Penetration of an Explosively Formed Penetrator. Int. J. Impact. Eng. 2010, 37(4): 414-424.
  • [7] Li, R.; Li, W.B.; Guo, X.D.; Liang, L.; Li, W.B.; Wang, X.M. Effect of the Annular Multi-point Initiation Control Parameters on Jet Formation. Propellants Explos. Pyrotech. 2019, 44: 127-137.
  • [8] Li, Y.; Li, Y.H.; Wen, Y.Q. A Method for Estimating the Synchronization of a Mild Multipoint Synchronous Initiation Circuit. J. Energ. Mater. 2018, 36(2): 152-168.
  • [9] Hu, L.S.; Hu, S.Q.; Cao, X. Study on the Initiation Capacities of Two Booster Pellets. Cent. Eur. J. Energ. Mater. 2012, 9(2): 261-272.
  • [10] Wang, J.Y.; An, C.W.; Li, G.; Liang, L.; Xu, W.Z.; Wen, K. Preparation and Performances of Castable HTPB/CL-20 Booster Explosives. Propellants Explos. Pyrotech. 2011, 36: 34-41.
  • [11] Wei, Y.J.; Wang, J.Y.; An, C.W.; Li, H.Q.; Wen, X.M.; Yu, B.S. GAP/CL-20-based Compound Explosive: A New Booster Formulation Used in a Small-sized Initiation Network. J. Energ. Mater. 2017, 35(1): 53-62.
  • [12] An, C.W.; Wen, X.M.; Wang, J.W.; Wu, B.D. GAP/DNTF Based PBX Explosives: A Novel Formula Used in Small Sized Explosive Networks. Cent. Eur. J. Energ. Mater. 2016, 13(2): 397-410.
  • [13] Gibbons, G.; Silvia, D.A. Manufacture of Explosive Networks using Silk Screening Techniques and Explosive Inks. Patent US 5046425, 1991.
  • [14] Xue, Z.Q.; Hu, S.Q.; Cao, X.; Zhang, J. A Study of the Detonation Behavior of an Annular Booster Pellet. J. Energ. Mater. 2017, 35(1): 9-19.
  • [15] Ihen, A.; Lee, W.; Fuchs, B.; Petrock, A.; Samuels, P.; Stepanov, V.; Stasio, A.D. Inkjet-printing of Nanocomposite High-explosive Materials for Direct Write Fuzing. 54th Fuze Conf., Kansas City, MO, 2010, 11-13.
  • [16] Wang, D.J.; Zheng, B.H.; Guo, C.P.; Gao, B.; Wang, J.; Yang, G.C.; Huang, H.; Nie, F.D. Formulation and Performance of Functional Sub-micro CL-20-based Energetic Polymer Composite Ink for Direct-Write Assembly. RSC Adv. 2016, 6: 112325-112331.
  • [17] Xu, C.H.; An, C.W.; Li, Q.B.; Xu, S.; Wang, S.; Guo, H.; Wang, J.Y. Preparation and Performance of Pentaerythrite Tetranitrate-based Composites by Direct Ink Writing. Propellants Explos. Pyrotech. 2018, 43: 1149-1156.
  • [18] Xu, C.H.; An, C.W.; He, Y.N.; Zhang, Y.R., Li, Q.B.; Wang, J.Y. Direct Ink Writing of DNTF Based Composite with High Performance. Propellants Explos. Pyrotech. 2018, 43: 754-758.
  • [19] Wang, J.Y., Xu, C.H.; An, C.W.; Song, C.K.; Liu, B.; Wu, B.D.; Geng, X.H. Preparation and Properties of CL-20 Based Composite by Direct Ink Writing. Propellants Explos. Pyrotech. 2017, 42: 1139-1142.
  • [20] Li, Q.B.; An, C.W; Han, X.; Xu, C.H.; Song, C.K.; Ye, B.Y.; Wu, B.D.; Wang, J.Y. CL-20 Based Explosive Ink of Emulsion Binder System for Direct Ink Writing. Propellants Explos. Pyrotech. 2018, 43: 533-537.
  • [21] Xu, C.H.; An C.W.; Long Y.L.; Li Q.B.; Guo H.; Wang S.; Wang J.Y. Inkjet Printing of Energetic Composites With High Density. RSC Adv. 2018, 8: 35863-35869.
  • [22] Decker, C. Kinetic Study and New Applications of UV Radiation Curing. Macromol. Rapid Commun. 2002. 23: 1067-1093.
  • [23] Nair, U.R.; Sivabalan, R.; Gore, G.M.; Geetha, M.; Asthana, S.N.; Singh, H. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based Formulations (review). Combust. Explo. Shock. 2005, 41(2): 121-132.
  • [24] Cumming, A.S. New Trends in Advanced High Energy Materials. J. Aero. Tech. Manag. 2009, 1(2): 161-166.
  • [25] Kobylkin, I.F. Critical Detonation Diameter of Highly Desensitized Low-sensitivity Explosive Formulations. Combust. Explo. Shock. 2009, 45(6): 732-737.
  • [26] An, C.W.; Li, H.Q.; Guo, W.J.; Geng, X.H.; Wang, J.Y. Nano Cyclotetramethylene Tetranitramine Particles Prepared by a Green Recrystallization Process. Propellants Explos. Pyrotech. 2014, 39: 701-706.
  • [27] Dobratz, B.M.; Crawford, P.C, LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants. Lawrence Livermore National Laboratory, Livermore, CA, 1985, pp. 8-13.
  • [28] Hu, L.S.; Hu, S.Q.; Cao, X. Application of the Multipoint Synchronous Circuit of the Annular Booster Pellet. Int. J. Energ. Mater. Chem. Prop. 2013, 12(6): 475-485.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ffed9a9-6675-4f13-82a0-a1722a8c7ee1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.