Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Motivation The increasing integration of intelligent sensors into autonomous systems, especially in the context of IoT, requires comprehensive and safer solutions, additionally adaptable and reliable. Modelling their dynamic behavior in complex environments remains a challenge. This study fits into these areas and computationally models capacitive and inductive skin sensors to ensure robust functionality and seamless IoT integration. Results This study introduces a robust model of IoT-integrated multi-sensors, demonstrating their ability to convert capacitance changes in the environment into current signals and shape them for control purposes, which is crucial for smart skin sensor systems. Interval calculations were used to optimize the parameters of the integrated sensors. This analysis highlighted their sensitivity to touch and environmental conditions, which is critical for developing safer and more intelligent responses of such systems. It is shown how changes in the sensor-object distance affect the optimization of the integrated sensor behavior, which is essential for managing uncertainty in real-world applications, ensuring reliable and consistent performance. The authors proposed a model for integrating an intelligent skin sensor with an autonomous IoT system. This model shows significant potential for miniaturization, integration with nanogenerators, and scalability, making it particularly suitable for IoT applications. The study confirmed the practical usefulness of these models in designing intelligent and autonomous sensor arrays capable of robust and trouble-free operation in complex, dynamic, and safety-critical IoT-enabled environments.
Wydawca
Rocznik
Tom
Strony
362--380
Opis fizyczny
Bibliogr. 53 poz., fig., tab.
Twórcy
autor
- Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, Poland
autor
- Faculty of Computer Sciences and Information Technology, West Pomeranian University of Technology, Al. Piastów 17, Szczecin, Poland
Bibliografia
- 1. Chen, J., Zhu, Y., Chang, X., Pan, D., et al. Recent progress in essential functions of soft electronic skin, *Advanced Functional Materials*, 2021, 31(42), 2104686. https://doi.org/10.1002/adfm.202104686.
- 2. Li, W., Ke, K., Jia, J., et al. Recent advances in multiresponsive flexible sensors towards e-skin: a delicate design for versatile sensing, *Small*, 2021, 18(7), 2103734. https://doi.org/10.1002/smll.202103734.
- 3. Wang, X., Dong, L., Zhang, H., et al. Recent progress in electronic skin, *Advanced Science*, 2015, 2(10), 1500169. https://doi.org/10.1002/advs.201500169.
- 4. Liu, Y., Wang, L., Zhao, L., et al. Recent progress on flexible nanogenerators toward self-powered systems, *Light Advanced Manufacturing*, 2020, 2, 318-340. https://doi.org/10.1002/inf2.12079.
- 5. Shih, B., Shah, D., Li, J., et al. Electronic skins and machine learning for intelligent soft robots, *Science Robotics*, 2020, 5(41). https://doi.org/10.1126/scirobotics.aaz9239.
- 6. Lu, N., Kim, D. Flexible and stretchable electronics paving the way for soft robotics, *Soft Robotics*, 2013, 1(1). https://doi.org/10.1089/soro.2013.0005.
- 7. Shu, S., Wang, Z., Chen, P., et al. Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics, *Advanced Materials*, 2023, 35(18). https://doi.org/10.1002/adma.202211385.
- 8. Hedge, Ch., Su, J., Tan, J. Sensing in soft robotics, *ACS Nano*, 2023, 17(16). https://pubs.acs.org/doi/full/10.1021/acsnano.3c04089.
- 9. Ma, Y., Li, H., Chen, S., et al. Skin-like electronics for perception and interaction: materials, structural designs, and applications, *Advanced Intelligent Systems*, 2020, 3(4). https://doi.org/10.1002/aisy.202000108.
- 10. Yang, J., Mun, J., Kwon, S., et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics, *Advanced Materials*, 2019, 31(48), 1904765. https://doi.org/10.1002/adma.201904765.
- 11. Liu, X., Wei, Y., Qiu, Y., et al. Advanced flexible skin-like pressure and strain sensors for human health monitoring, *Micromachines*, 2021, 12(6), 695. https://doi.org/10.3390/mi12060695.
- 12. Shimadera, S., Kitagawa, K., Sagehashi, K. Optical skin: sensor-integration-free multimodal flexible sensing, *Computer Vision and Pattern Recognition*, 2022, 12, 13096. https://doi.org/10.48550/arXiv.2202.03189.
- 13. Liu, Z., Cai, M., Hong, S., et al. Inverse design of artificial skins, *Soft Matter*, 2023. https://doi.org/10.48550/arXiv.2304.04609.
- 14. Zhang, L., Pan, J., Zhang, Z., et al. Ultrasensitive hybrid optical skin, *Applied Physics*, 2018. https://doi.org/10.48550/arXiv.1812.03808.
- 15. Zhang, L., Pan, J., Zhang, Z., et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers, *Opto-Electronic Advances*, 2020, 3(190022). DOI: 10.29026/oea.2020.190022.
- 16. Liu, Y., Pharr, M., Salvatore, G., et al. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring, *ACS Nano*, 2017, 11(10), 9567-9569. https://doi.org/10.1021/acsnano.7b07214.
- 17. Liu, S., Guo, W., Chen, H., et al. Recent progress on flexible self-powered tactile sensing platforms for health monitoring and robotics, *Small*, 2024. https://doi.org/10.1002/smll.202405520.
- 18. Yuan, Z., Han, S., Gao, W., et al. Flexible and stretchable strategies for electronic skins: materials structure and integration, *ACS Appl. Electron. Mater.*, 2022, 4(1), 1-26. https://doi.org/10.1021/acsaelm.1c00025.
- 19. Ma, Y., Li, H., Chen, S., et al. Skin-like electronics for perception and interaction: materials, structural designs, and applications, *Advanced Intelligent Systems*, 2020, 3(4). https://doi.org/10.1002/aisy.202000108.
- 20. Nie, B., Liu, S., Qu, Q., et al. Bio-inspired flexible electronics for smart e-skin, *Acta Biomaterialia*, 2022, 139, 280-295. https://doi.org/10.1016/j.actbio.2021.06.018.
- 21. Someya, T., Yokota, T., Lee, S. Electronic skins for robotics and wearables, *IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)*, Vancouver, Canada, January 2020. https://doi.org/10.1109/MEMS46641.2020.9056304.
- 22. Liu, H., Wu, Ch., Lin, S. From skin movement to wearable robotics: the case of robotic gloves, *Soft Robotics*, 2024, 11(5). https://doi.org/10.1089/soro.2023.011.
- 23. Zhong, Ch., Zhao, S., Liu, Y., et al. A flexible wearable e-skin sensing system for robotic teleoperation, *Robotica*, 2023, 41(3), 1025-1038. https://doi.org/10.1017/S026357472200131X.
- 24. Liu, X., Li, H., Tao, M., et al. Organic flexible electronics for innovative applications in electronic skin, *Advanced Materials Technologies*, 2024, 1-26. https://doi.org/10.1002/admt.202400661.
- 25. Zhu, P., Li, Z., Pang, J., et al. Latest developments and trends in electronic skin devices, *Soft Sci.*, 2024, 4(17). http://dx.doi.org/10.20517/ss.2024.05.
- 26. Zhou, Z., Xu, Z., Cao, L., et al. Triboelectricity based self-powered digital displacement sensor for aircraft flight actuation, *Advanced Functional Materials*, 2023, https://doi.org/10.1002/adfm.202311839.
- 27. Zhang, Y., Chen, Q., Zhang, F. Electrochemical triboelectricity: A comprehensive survey of current research and future prospects, *Nano Energy*, 2024, 130, 110180. https://doi.org/10.1016/j.nanoen.2024.110180.
- 28. Jiang, Q., Antwi-Afari, M., Fadaie, S. Self-powered wearable internet of things sensors for human-machine interfaces: a systematic literature review and science mapping analysis, *Nano Energy*, 2024, 131(A), 110252. https://doi.org/10.1016/j.nanoen.2024.110252.
- 29. Juyal, S., Sharma, S., Shukla, A. Smart skin health monitoring using AI-enabled cloud-based IoT, *Materials Today*, 2021, 46(20), 10539-10545. https://doi.org/10.1016/j.matpr.2021.01.074.
- 30. El Fray, I., Wiliński, A. Modifications of the formal risk analysis and assessment for the information system security, *Advances in Science and Technology Research Journal*, 2024, 18(2), 317-332. DOI: 10.12913/22998624/185162.
- 31. Bartłomiejczyk, M., El Frey, I., Kurkowski, M., et al. User authentication protocol based on the location factor for a mobile environment, *IEEE Access*, 2022, 10, 16439-16455. https://doi.10.1109/ACCESS.2022.3148537.
- 32. Pasko, M. Przyklady i zadania z dynamiki elektrycznych obwodow liniowych. Wydawnictwo Politechniki Śląskiej, 2003. ISBN: 83-7335-079-9.
- 33. Houpis, C.H., Sheldon, S.N. *Linear control system analysis and design with matlab*, CRC Press, 2013. https://doi.org/10.1201/b16032.
- 34. Wegrzyn, S. *Rachunek operatorowy*, PWN, 1960.
- 35. Wagner, K. *Rachunek operatorowy i przekształcenie Laplacea*, PWN, 1960.
- 36. Hillar, G. *MQTT essentials - a lightweight IoT protocol*, Packt Publishing Ltd., Birmingham, 2017.
- 37. Zhao, J., Sun, L., Fan, H., et al. MQTT-based internet of things smart home linkage control system, *2024 3rd International Conference on Electronics and Information Technology (EIT)*, Chengdu, China, 2024, 521-525. https://doi.org/10.1109/EIT63098.2024.10762564.
- 38. Yassein, M., Shatnawi, M., Aljwarneh, S., et al. Internet of things: survey and open issues of MQTT protocol, *2017 International Conference on Engineering & MIS (ICEMIS)*, Monastir, Tunisia, 2017, 1-6. DOI: 10.1109/ICEMIS.2017.8273112.
- 39. Singh, M., Rajan, M., Shivraj, V., et al. Secure MQTT for internet of things (IoT), *2015 Fifth International Conference on Communication Systems and Network Technologies*, Gwalior, India, 2015, 368-373. https://doi.org/10.1109/CSNT.2015.108.
- 40. Smart, G. *Practical Python Programming for IoT*, Packt Publishing Ltd., Birmingham, 2020. ISBN: 978-1-83898-246-1.
- 41. Yu, J., Tang, J., Wang, L., et al. Dual-mode sensor for intelligent solution monitoring: Enhancing sensitivity and recognition accuracy through capacitive and triboelectric sensing, *Nano Energy*, 2023, 118. https://doi.org/10.1016/j.nanoen.2023.109009.
- 42. Ren, H., Zhang, H. Control strategy based on improved fuzzy algorithm for energy control of wrist rehabilitation robot, *Alexandria Engineering Journal*, 2023, 77, 634-644. https://doi.org/10.1016/j.aej.2023.07.024.
- 43. Kumar, L., Islam, T., Mukhopadhyay, S. Sensitivity enhancement of a PPM level capacitive moisture sensor, *Electronics*, 2017, 6(2). https://doi.org/10.3390/electronics6020041.
- 44. Zeng, Y., Qin, Y., Yang, Y., et al. A Low-Cost Flexible Capacitive Pressure Sensor for Health Detection, *IEEE Sensors Journal*, 2022, 22(8). https://doi.org/10.1109/JSEN.2022.3158354.
- 45. Cheng, A., Wu, L., Sha, Z. Recent advances of capacitive sensors: materials, microstructure designs, applications, and opportunities, *Advanced Materials Technologies*, 2023. https://doi.org/10.1002/admt.202201959.
- 46. Mohamed, F. Hassan, Patrick, K. Capacitive polymer sensors: factors influencing performance and design principles, *Sensors and Actuators B: Chemical*, 2023, 393. https://doi.org/10.1016/j.snb.2023.134211.
- 47. Litvinov, A., Etrekova, K., Podlepetsky, et al. MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors, *Sensors*, 2023, 23(7), 3760. https://doi.org/10.3390/s23073760.
- 48. Escobedo, P., Ntagios, M., Shakthivel, D., et al. Energy generating electronic skin with intrinsic tactile sensing without touch sensors, *IEEE Transactions on Robotics*, 2021, 37(2), 683-690. https://doi.org/10.1109/TRO.2020.3031264.
- 49. Yin, X., Zhang, X., Li, Y., et al. A combined inductive and capacitive non-destructive evaluation technique using a single spiral coil sensor, *IEEE Sensors Journal*, 2021, 21(16), 18187-18196. https://doi.org/10.1109/JSEN.2021.3084204.
- 50. Wiliński, A., Hoser, P., Strzęciwilk, D., et al. Modeling nonlinear response of the humanoid’s sensory lobe to environmental threats, *Computer Algebra Systems in Teaching and Research (CASTR)*, Siedlce, 2024 (XIII), 155-171. ISBN: 978-83-68355-03-1.
- 51. Wiliński, A., Strzęciwilk, D., Hoser, P. Modeling the estimation of the impedance response of Artificial skin to sensory stimulation, *Computer Algebra Systems in Teaching and Research (CASTR)*, Siedlce, 2024 (XIII), 172-184.
- 52. Yim, H., Kang, H., Moon, S., et al. Multi-functional safety sensor coupling capacitive and inductive measurement for physical human–robot interaction, *Sensors and Actuators A: Physical*, 2023, 354, 114285. https://doi.org/10.1016/j.sna.2023.114285.
- 53. Xie, Y., Wang, S., Zhang, S., et al. Dual Inductive–Capacitive Detection Cell: A Promising Tool for Distinguishing Mixed Metal Particles, *IEEE Sensors Journal*, 2023, 23(18), 21163-21171. https://doi.org/10.1109/JSEN.2023.3303914.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ffddb55-a994-41ac-9123-b313815fb540
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.