PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biometric indicators of growth and development of Lolium perenne and Trifolium repens in terms of recultivation of soil contaminated with petroleum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to determine the factors defining the growth and development of Lolium perenne and Trifolium repens upon petroleum contamination. The top layer of clay soil contaminated with petroleum products resulting from an oil pipeline failure was collected for the tests. The control was the same type of uncontaminated soil with the addition of, under laboratory conditions, tissue paper. The research was conducted in two stages. The first concerned the germination process and seedlings parameters (Petri dishes). The germination energy (GE) and the germination capacity (GC) of seeds were determined. The seedling’s development was also evaluated based on ‘WinRhizo PRO 2009’ software. Then, in the second stage, pot tests were carried out, where the growth and development of species in the first year after sowing were temporarily measured. The parameters studied were the number, height, green and dry masses of the plants. A Gompertz regression model describing seed species germination and number species as time dependent dynamic was applied. The data were analysed statistically using variance analysis (ANOVA) and the PCA (principal component analysis) method. The results of our study indicated that admixture of petroleum into the soil does not seriously affect the development dynamics of Lolium perenne seedlings. The diesel oil contamination mostly affects the germination of the Trifolium repens by a statistically significant increase of the maximum value of germination and increasing the maximum growth rate.
Wydawca
Rocznik
Strony
70--79
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences - SGGW, Institute of Environmental Engineering, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences - SGGW, Water Center, Warsaw, Poland
  • Warsaw University of Life Sciences - SGGW, Institute of Environmental Engineering, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences - SGGW, Institute of Environmental Engineering, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Sciences - SGGW, Institute of Environmental Engineering, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • BASKIN C.C., BASKIN J.M. 2014. Seeds: Ecology, biogeography, and evolution of dormancy and germination. 2nd ed. Amsterdam. Elsevier Academic Press. ISBN 9780124166776 pp. 1600.
  • CHAUDHARY P., SINGH S.B., CHAUDHRY S., NAIN L. 2012. Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area – A case study. Environmental Monitoring and Assessment. Vol. 184 p. 1145–1156. DOI 10.1007/s10661-011-2029-3.
  • CHEN S., ZHONG M. 2019. Bioremediation of petroleum-contaminated soil, environmental chemistry and recent pollution control approaches. In: Environmental chemistry and recent pollution control approaches. Eds. H. Saldarriaga-Noreña, M.A. Murillo-Tovar, R. Farooq, R. Dongre, S. Riaz. London. IntechOpen. DOI 10.5772/intechopen.90289.
  • DORYWALSKI J., WOJCIECHOWICZ M., BARTZ J. 1964. Metodyka oceny nasion [Methods of seed evaluation]. Warszawa. PWRiL pp. 319.
  • ERRINGTON I., KING C.K., WILKINS D., SPEDDING T., HOSE G.C. 2018. Ecosystem effects and the management of petroleum-contaminated soils on subantarctic islands. Chemosphere. Vol. 194 p. 200–210. DOI 10.1016/j.chemosphere.2017.11.157.
  • Intekprojekt 2014. „Studium uwarunkowań i kierunków zagospodarowania przestrzennego gminy Rogów” – Załącznik Nr 1 do uchwały Nr 221/XXXIX/2014 Rady Gminy w Rogowie z dnia 25 czerwca 2014 [“Study of the conditions and directions of spatial development in the Rogów municipality” – Annex 1 to the Resolution no. 221/XXXIX/2014 of the Rogów Municipality Council of June 25, 2014]. Łódź. Intekprojekt Gabriel Ferliński pp. 123.
  • GAŁĄZKA A., GAŁĄZKA R. 2015. Phytoremediation of polycyclic aromatic hydrocarbons in soils artificially polluted using plant-associated-endophytic bacteria and Dactylis glomerata as the bioremediation plant. Polish Journal of Microbiology. Vol. 64 p. 241–252. DOI 10.5604/01.3001.0009.2119.
  • GASKIN S.E., BENTHAM R.H. 2010. Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Science of The Total Environment. Vol. 408 p. 3683–3688. DOI 10.1016/j.scitotenv.2010.05.004.
  • GNIAZDOWSKA A., BUDNICKA K., KRASUSKA U. 2013. Regulacja spoczynku i kiełkowania nasion – czynniki endogenne i oddziaływania środowiskowe. W: Różnorodność biologiczna – od komórki do ekosystemu [Regulation of seed dormancy and germination – endogenous factors and environmental influences. In: Biodiversity – from cell to ecosystem]. Eds. I. Ciereszko, A. Bajguza. Białystok. PTB p. 25–38.
  • HAY F.R., PROBERT R.J. 2013. Advances in seed conservation of wild plant species: A review of recent research. Conservation Physiology. Vol. 1(1) p. 1–11. DOI 10.1093/conphys/cot030.
  • HEWELKE E., SZATYŁOWICZ J., HEWELKE P., GNATOWSKI T., AGHALAROV R. 2018. The impact of diesel oil pollution on the hydrophobicity and CO 2 efflux of forest soils. Water, Air and Soil Pollution. Vol. 229, 51. DOI 10.1007/s11270-018-3720-6.
  • HUSSAIN I., PUSCHENREITER M., GERHARD S., SANI S.G.A.S., KHAN W., REICHENAUER T.G. 2019. Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizoremediation trial. Environmental Science and Pollution Research. Vol. 26 p. 18451–18464. DOI 10.1007/s11356-019-04819-6.
  • KGSP 2020. Interwencje PSP: lata 2010–2021 zestawienia [Interventions of the State Fire Service, 2010–2021 statements] [online]. Warszawa. Komenda Główna Państwowej Straży Pożarnej. [Access data 12.05.2022]. Available at: https://www.gov.pl/web/kgpsp/interwencje-psp
  • JANICKA M., PAWLUŚKIEWICZ B., MAŁUSZYŃSKA E., GNATOWSKI T. 2021. Diversity of the seed material of selected plant species of naturally valuable grassland habitats in terms of the prognosis of introduction success. Sustainability. Vol. 13, 13979. DOI 10.3390/su132413979.
  • JENSEN K. 2004. Dormancy patterns, germination ecology, and seed-bank types of twenty temperate fen grassland species. Wetlands. Vol. 24 p. 152–166. DOI 10.1672/0277-5212(2004)024[0152:DPGEAS]2.0.CO;2.
  • KECHAVARZI C., PETTERSSON K., LEEDS-HARRISON P., RITCHIE L., LEDIN S. 2007. Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environmental Pollution. Vol. 145 p. 68–74. DOI 10.1016/j.envpol.2006.03.039.
  • MALACHOWSKA-JUTSZ A., JANOSZ W., RUDEK J. 2012. Toksyczność gleby zanieczyszczonej olejem silnikowym poddanej samooczyszczaniu oraz fitoremediacji [Toxicity of engine oil contaminated soil made subject to natural attenuation and phytoremediation]. Ochrona Środowiska. Vol. 34 p. 15–20.
  • MAŁUSZYŃSKA E., WIEWIÓRA B., RYBKA K., DRZEWIECKI J., BOROS L., SZYDŁOWSKA A. 2015. Międzynarodowe przepisy oceny nasion: Polska wersja wydania [International rules for seed testing. Polish version of the edition]. Radzików. IHAR-PIB pp. 766.
  • MAŁUSZYŃSKA I., MAŁUSZYŃSKI M.J. 2009. Odporność wybranych gatunków roślin na zanieczyszczenia gleby przepracowanym olejem silnikowym [Immunity of selected plants species on soil pollution of overworked engine oil]. Inżynieria Ekologiczna. Nr 21 p. 40–47.
  • MAŁUSZYŃSKI M.J., MAŁUSZYŃSKA I. 2022. The mercury content in the upper layers of soils in the selected area of the Masovian Landscape Park. Sustainability. Vol. 14, 405. DOI 10.3390/su14010405.
  • PÁLIZ K.P., CUNACHI A.M., LICTA E. 2021. Reduction of the soil environmental impact caused by the presence of total petroleum hydrocarbons (TPH) by using Pseudomonas sp. Scientific Review Engineering and Environmental Studies (SREES). Vol. 30 p. 573–584. DOI 10.22630/PNIKS.2021.30.4.48.
  • PAWLUŚKIEWICZ B., GNATOWSKI T., JANICKA M. 2020. The influence of soil contamination with diesel oil on germination dynamics and seedling development of selected species of the Fabaceae family. Journal of Ecological Engineering. Vol. 21 p. 210–218.
  • R Core Team 2021. R: A language and environment for statistical computing [online]. Vienna, Austria. R Foundation for Statistical Computing. [Access 12.05.2022]. Available at: URL https://www.R-project.org/
  • Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi [Ordinance of the Minister of the Environment, 2016. Ordinance of the Minister of the Environment of September 1, 2016 on the method of assessing the pollution of the earth’s surface]. Dz.U. item 1395.
  • SMITH E., THAVAMANI P., RAMADASS K., NAIDU R., SRIVASTAVA P., MEGHARAJ M. 2015. Remediation trials for hydrocarbon-contaminated soils in arid environments: Evaluation of bioslurry and biopiling techniques. International Biodeterioration & Biodegradation. Vol. 101 p. 56–65. DOI 10.1016/j.ibiod.2015.03.029.
  • Ustawa z dnia 27 kwietnia 2001 r. Prawo ochrony środowiska [Environmental protection law of April 27, 2001]. Dz.U. No. 62 item 627.
  • WALKER K.J., STEVENS P.A., STEVENS D.P., MOUNTFORD J.O., MANCHESTER S.J., PYWELL R.F. 2004. The restoration and recreation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biological Conservation. Vol. 1 p. 1–18. DOI 10.1016/j.biocon.2003.10.020.
  • WYSZKOWSKA J., BOROWIK A., KUCHARSKI J. 2019. The resistance of Lolium perenne L. × hybridum, Poa pratensis, Festuca rubra, F. arundinacea, Phleum pratense and Dactylis glomerata to soil pollution by diesel oil and petroleum. Plant, Soil and Environment. Vol. 65 p. 307–312. DOI 10.17221/42/2019-PSE.
  • WYSZKOWSKI M., WYSZKOWSKA J., KORDALA N., BOROWIK A. 2022. Effects of coal and sewage sludge ashes on macronutrient content in maize (Zea mays L.) grown on soil contaminated with eco-diesel oil. Materials. Vol. 15, 525. DOI 10.3390/ma15020525.
  • XIE W., ZHANG Y., LI R., YANG H., WU T., ZHAO L., LU Z. 2017. The responses of two native plant species to soil petroleum contamination in the Yellow River Delta, China. Environmental Science and Pollution Research. Vol. 24 p. 24438–24446. DOI 10.1007/s11356-017-0085-0.
  • YIN X., GOUDRIAAN J., LANTINGA E.A., VOS J., SPIERTZ H.J. 2003. A flexible sigmoid function of determinate growth. Annals of Botany. Vol. 91 p. 361–371. DOI 10.1093/aob/mcg029.
  • ZHU H., GAO Y., LI D. 2019. Germination and growth of grass species in soil contaminated by drill cuttings. Western North American Naturalist. Vol. 79 p. 49–55. DOI 10.3398/064.079.0105.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ffd3063-ed5b-4bb1-9764-dedb9fc225c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.