Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Least-squares reverse time migration is a high-precision migration method, the objective function of this method appears as a strong nonlinear function which is likely to plunge into local minimization, and the whole migration process requires massive calculation. Wavefield reconstruction is an optimized inversion theory proposed in recent years, and has achieved good results in full waveform inversion. In this method, the objective function introduces the wave equation as its penalty term to expand the search space of the solution and weaken the influence of the local minimization. In this paper, the idea of wavefield-reconstructed inversion is introduced into the least-squares reverse time migration. The scattering wavefield reconstruction algorithm under Born approximation is used to constrain the migration process, and the dynamic constraint factor in time–space domain is introduced to suppress the high-order scattering artifacts and improve the signal-to-noise ratio of the migration results. Generally, the method can ensure the accuracy of the update gradient. The experimental results show that this method can effectively suppress the artifacts caused by high-order scattering wave when there are large-scale high-velocity anomalies in the velocity field. In addition, the method has also achieved good results in the test of field datasets.
Wydawca
Czasopismo
Rocznik
Tom
Strony
671--680
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
- Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
autor
- Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
- Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
autor
- Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
- Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
autor
- Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, People’s Republic of China
Bibliografia
- 1. Baysal E, Kosloff DD, Sherwood JWC (1983) Reverse time migration. Geophysics 48(11):1514–1524. https://doi.org/10.1190/1.1441434
- 2. Bleistein N, Gray SH (1985) An extension of the Born inversion method to a depth dependent reference profile. Geophys Prospect 33(7):999–1022. https://doi.org/10.1111/j.1365-2478.1985.tb00794.x
- 3. Clayton RW, Stolt RH (1981) A Born-WKBJ inversion method for acoustic reflection data. Geophysics 46(11):1559–1567. https://doi.org/10.1190/1.1441162
- 4. Cohen JK, Bleistein N (1979) Velocity inversion procedure for acoustic waves. Geophysics 44(6):1077–1087. https://doi.org/10.1190/1.1440996
- 5. Dong S, Cai J, Guo M, Suh S, Zhang Z, Wang B, Li Z (2012) Least-squares reverse time migration: towards true amplitude imaging and improving the resolution. SEG Tech Program Expand Abstr. https://doi.org/10.1190/segam2012-1488.1
- 6. Eaton DW (1999) Weak elastic-wave scattering from massive sulfide orebodies. Geophysics 64(1):289–299. https://doi.org/10.1190/1.1444525
- 7. Hudson JA, Heritage JR (1981) The use of the Born approximation in seismic scattering problems. Geophys J Int 66(1):221–240. https://doi.org/10.1111/j.1365-246X.1981.tb05954.x
- 8. Lambaré G, Virieux J, Madariaga R, Jin S (1992) Iterative asymptotic inversion in the acoustic approximation. Geophysics 57(9):1138–1154. https://doi.org/10.1190/1.1443328
- 9. van Leeuwen, T. and Herrmann, F.J. and Peters, B., 2014. A New Take on FWI - Wavefield Reconstruction Inversion. Conference Proceedings, 76th EAGE Conference and Exhibition 2014, pp 1–5. https://doi.org/10.3997/2214-4609.20140703.
- 10. Liu Y, Liu X, Osen A, Shao Y, Hu H, Zheng Y (2016) Least-squares reverse time migration using controlled-order multiple reflections. Geophysics 81(5):S347–S357. https://doi.org/10.1190/geo2015-0479.1
- 11. Nemeth T, Wu C, Schuster GT (1999) Least-squares migration of incomplete reflection data. Geophysics 64(1):208–221. https://doi.org/10.1190/1.1444517
- 12. Ouyang W, Mao W, Li X, Li W (2014) Seismic inversion with generalized Radon transform based on local second-order approximation of scattered field in acoustic media. Earthq Sci 27:433–439. https://doi.org/10.1007/s11589-014-0092-x
- 13. Plessix RE (2006) A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys J Int 167(2):495–503. https://doi.org/10.1111/j.1365-246X.2006.02978.x
- 14. Plessix RE, Mulder WA (2004) Frequency-domain finite-difference amplitude-preserving migration. Geophys J Int 157(3):975–987. https://doi.org/10.1111/j.1365-246X.2004.02282.x
- 15. Raz S (1981) Three-dimensional velocity profile inversion from finite-offset scattering data. Geophysics 46(6):837–842. https://doi.org/10.1190/1.1441221
- 16. Ren Z, Liu Y, Sen MK (2017) Least-squares reverse time migration in elastic media. Geophys J Int 208(2):1103–1125. https://doi.org/10.1093/gji/ggw443
- 17. Symes WW (2008) Approximate linearized inversion by optimal scaling of prestack depth migration. Geophysics 73(2):R23–R35. https://doi.org/10.1190/1.2836323
- 18. van Leeuwen T, Herrmann FJ (2013) Mitigating local minima in full-waveform inversion by expanding the search space. Geophys J Int 195(1):661–667. https://doi.org/10.1093/gji/ggt258
- 19. da Silva NV (2015) Automatic wavefield reconstruction inversion. SEG Tech Program Expand Abstr. https://doi.org/10.1190/segam2015-5908659.1
- 20. van Leeuwen T, Herrmann FJ (2016) A penalty method for PDE-constrained optimization in inverse problems. Inverse Probl 32(1):015007
- 21. Wang J, Kuehl H, Sacchi MD (2005) High-resolution wave-equation AVA imaging: Algorithm and tests with a data set from the Western Canadian Sedimentary Basin. Geophysics 70(5):S91–S99. https://doi.org/10.1190/1.2076748
- 22. Weglein, A.B., Zhang, H., Ramírez, A.C., Liu, F. and Lira, J.E., 2009. Clarifying the underlying and fundamental meaning of the approximate linear inversion of seismic data. Geophysics 74(6) WCD1-WCD13. doi.org/https://doi.org/10.1190/1.3256286
- 23. Wong M, Biondi BL, Ronen S (2015) Imaging with primaries and free-surface multiples by joint least-squares reverse time migration. Geophysics 80(6):S223–S235. https://doi.org/10.1190/geo2015-0093.1
- 24. Yao G, Jakubowicz H (2012) Least-Squares Reverse-Time Migration. SEG Tech Program Expand Abstr 2012:1–5. https://doi.org/10.1190/segam2012-1425.1
- 25. Zhang Y, Duan L, Xie Y (2015) A stable and practical implementation of least-squares reverse time migration. Geophysics 80(1):V23–V31. https://doi.org/10.1190/geo2013-0461.1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ffc8491-18a2-4d93-84df-f82d6e440306