PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Theoretical modelling of XBn T2SLs InAs/InAsSb/B-AlAsSb mid-wave detector operating below thermoelectrical cooling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reports on the barrier mid-wave infrared InAs/InAsSb (xSb = 0.4) type-II superlattice detector operating below thermoelectrical cooling. AlAsSb with Sb composition, xSb = 0.97; barrier doping, ND < 2×10¹⁶ cm⁻³ leading to valence band offset below 100 meV in relation to the active layer doping, ND = 5×10¹⁵ cm⁻³ was proved to be proper material not introducing extra barrier in valence band in the analyzed temperature range in XBn architectures. The detectivity of the simulated structure was assessed at the level of ∼ 1011 Jones at T ∼ 100K assuming absorber thickness, d = 3 μm. The detector’s architecture for high frequency response operation, τs = 420 ps (T ∼ 77K) was presented with a reduced active layer of d = 1 μm.
Słowa kluczowe
Twórcy
  • Institute of Applied Physics, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Gen. S. Kaliskiego St., 00-908 Warsaw, Poland
autor
  • Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Roosevelt Rd., 10617 Taipei, Taiwan
autor
  • Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Roosevelt Rd., 10617 Taipei, Taiwan
autor
  • Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Roosevelt Rd., 10617 Taipei, Taiwan
Bibliografia
  • [1] D.Z.-Y. Ting, A. Soibel, L. Höglund, J. Nguyen, C.J. Hill, A. Khoshakhlagh, S.D.Gunapala, Type-II superlattice infrared detectors, Semicond. Semimetals 84(2011) 1–57, http://dx.doi.org/10.1016/B978-0-12-381337-4.00001-2.
  • [2] D. Lackner, M. Steger, M.L.W. Thewalt, O.J. Pitts, Y.T. Cherng, InAs/InAsSb strain balanced superlattices for optical detectors, material properties and energy band simulations, J. Appl. Phys. 111 (2012), 034507-1–9, http://dx.doi.org/10.1063/1.3681328.
  • [3] T. Schuler-Sandy, S. Myers, B. Klein, N. Gautam, P. Ahirwar, Z.-B. Tian, T.Rotter, G. Balakrishnan, E. Plis, S. Krishna, Gallium free type II InAs/InAsxSb1-x superlattice photodetectors, Appl. Phys. Lett. 101 (2012), 071111-1–3, http://dx.doi.org/10.1063/1.4745926.
  • [4] E.H. Steenbergen, B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, D.Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, S. Elhamri, O.O. Cellek, Y.-H.Zhang, Significantly improved minority carrier lifetime observed in along-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb, Appl. Phys. Lett. 99 (2011), 251110-1–3, http://dx.doi.org/10.1063/1.3671398.
  • [5] L. Höglund, D.Z.-Y. Ting, A. Khoshakhlagh, A. Soibel, C.J. Hill, A. Fisher, S. Keo,S.D. Gunapala, Influence of radiative and non-radiative recombination on theminority carrier lifetime in midwave infrared InAs/InAsSb superlattices, Appl.Phys. Lett. 103 (2013), 221908-1–5, http://dx.doi.org/10.1063/1.4835055.
  • [6] S. Maimon, G.W. Wicks, nBn detector, an infrared detector with reduced darkcurrent and higher operating temperature, Appl. Phys. Lett. 89 (2006),151109-1-3, http://dx.doi.org/10.1063/1.2360235.
  • [7] I. Vurgaftman, J.R. Meyer, Band parameters for III–V compoundsemiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815–5875, http://dx.doi.org/10.1063/1.1368156.
  • [8] V.O. Turin, A modified transferred-electron high-field mobility model for GaN devices simulation, Solid-State Electron. 49 (10) (2005) 1678–1682, http://dx.doi.org/10.1016/j.sse.2005.09.002.
  • [9] J.-P. Perez, Q. Durlin, C. Cervera, P. Christol, New Ga-Free InAs/InAsSb superlattice infrared photodetector, In Proceedings of the 6th International Conference on Photonics, Optics and Laser Technology (2018) 232–237,http://dx.doi.org/10.5220/0006634002320237.
  • [10] Q. Li, R.W. Dutton, Numerical small-signal AC modeling of deep-level-traprelated frequency-dependent output conductance and capacitance for GaAsMESFET’s on semi-insulating substrates, IEEE Trans. Electron Devices 38(1991) 1285–1288, http://dx.doi.org/10.1109/16.81618.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
2. This paper has been completed with the financial support of The National Centre for Research and Development-the grant no.PL-TW4/3/2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ffad900-39df-4323-8e27-7a8cee806276
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.