PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Constructing software for analysis of neuron, glial and endothelial cell numbers and density in histological Nissl-stained rodent brain tissue

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cell number, density and volume of white and gray matter in brain structures are not constant values. Cellular alterations in brain areas might coincide with neurological and psychiatric pathologies as well as with changes in brain functionality during selection experiments, pharmacological treatment or aging. Several softwares were created to facilitate quantitative analysis of brain tissues, however results obtained from these softwares require multiple manual settings making the computing process complex and time-consuming. This study attempts to establish half automated software for fast, ergonomic and an accurate analysis of cellular density, cell number and cellular surface in morphologically different brain areas: cerebral cortex, pond and cerebellum. Images of brain sections of bank voles stained with standard cresyl-violet technique (Nissl staining), were analyzed in designed software. Results were compared with other commercially available tools regarding number of steps to be done by user and number of parameters possible to measure.
Rocznik
Tom
Strony
77--85
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Institute of Environmental Sciences, Jagiellonian University.
autor
  • Department of Geoinfomatics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza 30 Av., 30–059 Cracow, Poland
  • Department of Geoinfomatics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza 30 Av., 30–059 Cracow, Poland
Bibliografia
  • [1] BERRETTA S., PANTAZOPOULOS H., LANGE N. Neuron numbers and volume of the amygdala in subjects diagnosed with bipolar disorder or schizophrenia. In Biological psychiatry, 2007, Vol. 62. Elsevier, pp. 884–893.
  • [2] BEZCHLIBNYK Y. B., SUN X., WANG J.-F., MACQUEEN G. M., MCEWEN B. S., YOUNG L. T. Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder. 2007, Vol. 32. Canadian Medical Association, p. 203.
  • [3] BIELECKA M., PIÓRKOWSKI A. Adaptive preprocessing of x-ray hand images. In Information Technologies in Biomedicine, Volume 3, 2014. Springer, pp. 61–70.
  • [4] BOWLEY M. P., DREVETS W. C., ÖNGÜR D., PRICE J. L. Low glial numbers in the amygdala in major depressive disorder. 2002, Vol. 52. Elsevier, pp. 404–412.
  • [5] DORPH-PETERSEN K.-A., PIERRI J. N., PEREL J. M., SUN Z., SAMPSON A. R., LEWIS D. A. The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys. 2005, Vol. 30. Nature Publishing Group, pp. 1649–1661.
  • [6] GARCÍA-AMADO M., PRENSA L. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex. 2012, Vol. 7. Public Library of Science, p. e38692.
  • [7] GONZALEZ R., WINTZ P. Digital image processing. 1987. Addison Wesley.
  • [8] HAMIDI M., DREVETS W. C., PRICE J. L. Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. 2004, Vol. 55. Elsevier, pp. 563–569.
  • [9] HOF P. R., HAROUTUNIAN V., FRIEDRICH JR V. L., BYNE W., BUITRON C., PERL D. P., DAVIS K. L. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. 2003, Vol. 53. Elsevier, pp. 1075–1085.
  • [10] JI Y., LIU H.-B., WANG X.-K., TANG Y.-Y. Color transfer to greyscale images using texture spectrum. In Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on, 2004, Vol. 7. pp. 4057–4061.
  • [11] KRECZMANSKI P., HEINSEN H., MANTUA V., WOLTERSDORF F., MASSON T., ULFIG N., SCHMIDT-KASTNER R., KORR H., STEINBUSCH H. W., HOF P. R., ET AL. Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. 2007, Vol. 130. Oxford Univ Press, pp. 678–692.
  • [12] KUMAR T., VERMA K. A theory based on conversion of rgb image to gray image. 2010, Vol. 7. Citeseer, pp. 7–10.
  • [13] KUO T., BYUN J. ITCN (Image-based Tool for Counting Nuclei).
  • [14] MŁYNARCZUK M. Description and classification of rock surfaces by means of laser profilometry and mathematical morphology. 2010, Vol. 47. Elsevier, pp. 138–149.
  • [15] OKARMA K. A validation of combined metrics for color image quality assessment. In Computer Vision and Graphics, L. J. Chmielewski, R. Kozera, B.-S. Shin, and K. Wojciechowski, Eds., 2014, Vol. 8671 of Lecture Notes in Computer Science. Springer International Publishing Switzerland, pp. 1–8.
  • [16] OKARMA K., FREJLICHOWSKI D., CZAPIEWSKI P., FORCZMASKI P., HOFMAN R. Similarity estimation of textile materials based on image quality assessment methods. In Computer Vision and Graphics, L. J. Chmielewski, R. Kozera, B.-S. Shin, and K. Wojciechowski, Eds., 2014, Vol. 8671 of Lecture Notes in Computer Science. Springer International Publishing Switzerland, pp. 478–485.
  • [17] OSZUTOWSKA-MAZUREK D., MAZUREK P., SYCZ K., WAKER-WÓJCIUK G. Adaptive windowed threshold for box counting algorithm in cytoscreening applications. In Image Processing and Communications Challenges 5, 2014. Springer, pp. 3–12.
  • [18] OTSU N. A Threshold Selection Method from Gray-level Histograms. 1979, Vol. 9. pp. 62–66.
  • [19] PAKKENBERG B. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. 1990, Vol. 47. American Medical Association, pp. 1023–1028.
  • [20] RUSS J. The image processing handbook. 1992. CRC Press.
  • [21] SCHINDELIN J., ARGANDA-CARRERAS I., FRISE E., KAYNIG V., LONGAIR M., PIETZSCH T., PREIBISCH S., RUEDEN C., SAALFELD S., SCHMID B., ET AL. Fiji: an open-source platform for biological-image analysis. 2012, Vol. 9. Nature Publishing Group, pp. 676–682.
  • [22] SCHUMANN C. M., AMARAL D. G. Stereological estimation of the number of neurons in the human amygdaloid complex. 2005, Vol. 491. Wiley Online Library, pp. 320–329.
  • [23] SCHUMANN C. M., AMARAL D. G. Stereological analysis of amygdala neuron number in autism. 2006, Vol. 26. Soc Neuroscience, pp. 7674–7679.
  • [24] SERRA J. Image analysis and mathematical morphology, v. 1. 1982. Academic press.
  • [25] STARK A. K., UYLINGS H. B., SANZ-ARIGITA E., PAKKENBERG B. Glial cell loss in the anterior cingulate cortex, a subregion of the prefrontal cortex, in subjects with schizophrenia. 2004, Vol. 161. Am Psychiatric Assoc, pp. 882–888.
  • [26] TADEUSIEWICZ R., KOROHODA P. Komputerowa analiza i przetwarzanie obraz´ow. 1997. Wydawnictwo Fundacji Poste¸pu Telekomunikacji.
  • [27] TADEUSIEWICZ R., OGIELA M. R. Medical image understanding technology. 2004. Springer, Heidelberg.
  • [28] TANG G., GUDSNUK K., KUO S.-H., COTRINA M. L., ROSOKLIJA G., SOSUNOV A., SONDERS M. S., KANTER E., CASTAGNA C., YAMAMOTO A., ET AL. Loss of mtor-dependent macroautophagy causes autistic-like synaptic pruning deficits. 2014. Elsevier.
  • [29] THUNE J. J., UYLINGS H., PAKKENBERG B. No deficit in total number of neurons in the prefrontal cortex in schizophrenics. 2001, Vol. 35. Elsevier, pp. 15–21.
  • [30] VERARDO M., LEWIS G., TAKEDA M., WARDAK B., RABENA M., CHEN D., FISHER S. Glial hypertrophy and neuronal remodeling in mice deficient in gfap and vimentin following experimental retinal detachment. 2005, Vol. 46. ARVO, p. 2443.
  • [31] WHALLEY H., WARDLAW J. Accuracy and reproducibility of simple cross-sectional linear and area measurements of brain structures and their comparison with volume measurements. 2001, Vol. 43. Springer, pp. 263–271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ff936b1-9f2c-4c96-bcb5-1e71ef8e91d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.