Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Eksperymentalne badania nad zagęszczaniem cyjanobakterii Microcystis aeruginosa w celu uzyskania biomasy do produkcji energii
Języki publikacji
Abstrakty
The purpose of the presented research is to analyse possible methods of thickening of the Microcystis aeruginosa (Kützing) Kützing cyanobacteria using the obtained concentrate as a biomass for the production of energy carriers and biologically valuable substances. Method of cyanobacteria thickening under the action of electric current and in the electric field, as well as the method of coagulation–flocculation and gravity thickening, was experimentally investigated in labscale conditions. Electrical methods didn't show positive results for the Microcystis aeruginosa thickening, despite the reports of their potential efficiency in a number of previous studies. The high efficiency of the method of coagulation– flocculation and gravity thickening of Microcystis aeruginosa suspensions was obtained. The optimum concentrations of industrial polymeric coagulants and flocculants for the thickening of Microcystis aeruginosa suspensions were defined in the range of about 10 ppm for the coagulants and about 1 ppm for the flocculants. Negative effect of the previous cavitational treatment of the diluted suspensions of Microcystis aeruginosa on the effectiveness of the coagulation–flocculation and gravitational thickening was confirmed experimentally. Hydrodynamic cavitation should be recommended to use after the thickening as the next step of processing of concentrated suspensions of Microcystis aeruginosa to achieve maximum extraction of energy carriers and biologically valuable substances.
Celem przedstawionych badań była analiza możliwych metod zagęszczania cyjanobakterii Microcystis aeruginosa (Kützing) Kützing do uzyskania koncentratu biomasy przydatnego do produkcji energii i substancji czynnych biologicznie. W skali laboratoryjnej analizowano metody zagęszczania pod wpływem prądu i pola elektrycznego oraz metody koagulacji– flokulacji i zagęszczania grawitacyjnego. Metody elektryczne nie dały pozytywnych wyników mimo wielu wcześniejszych badań na temat ich potencjalnej efektywności. Dużą efektywność uzyskano natomiast w przypadku metod koagulacji– flokulacji i grawitacyjnego zagęszczania zawiesiny Microcystis aeruginosa. Optymalne stężenie przemysłowych polimerowych koagulantów użytych do zagęszczania ustalono na 10 ppm, a flokulantów – na 1 ppm. Doświadczalnie potwierdzono ujemny wpływ wcześniejszego poddawania rozcieńczonych roztworów Microcystis aeruginosa działaniu kawitacji na skuteczność zagęszczania metodami koagulacji i flokulacji oraz zagęszczania grawitacyjnego. Hydrodynamiczną kawitację zaleca się stosować po zagęszczaniu, jako następny etap w przetwarzaniu zagęszczonej zawiesiny Microcystis aeruginosa do postaci nośnika energii i pozyskania substancji biologicznie czynnych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
113--119
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab.
Twórcy
autor
- Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, S. Bandera str., 12, 79013, Lviv, Ukraine
autor
- Lviv Polytechnic National University, Institute of Building and Environmental Engineering, Department of Hydraulic and Sanitary Engineering, Lviv, Ukraine
autor
- Kremenchuk Mykhailo Ostrohradskiy National University, Kremenchuk, Ukraine
autor
- Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, Lviv, Ukraine
autor
- Lviv Polytechnic National University, Viacheslav Chornovil Institute of Sustainable Development, Department of Ecology and Sustainable Environmental Management, Lviv, Ukraine
autor
- Lviv State University of Internal Affairs, Department of Management, Lviv, Ukraine
Bibliografia
- BABU B., WU J.T. 2008. Production of natural butylated hydroxytoluene as an antioxidant by freshwater phytoplankton. Journal of Phycology. Vol. 44 (6) p. 1447–1454. DOI 10.1111/j.1529-8817.2008.00596.x.
- CHATSUNGNOEN T., CHISTI Y. 2016. Harvesting microalgae by flocculation-sedimentation. Algal Research. Vol. 13 p. 271–283. DOI 10.1016/j.algal.2015.12.009.
- CHENG J., SUN J., HUANG Y., ZHOU J., CEN K. 2014. Fractal microstructure characterization of wet microalgal cells disrupted with ultrasonic cavitation for lipid extraction. Bioresource Technology. Vol. 170 p. 138–143. DOI 10.1016/j.biortech.2014.07.090.
- DAS P., THAHER M.I., HAKIM M.A.Q.M.A, AL-JABRI H.M.S.J., ALGHASAL G.S.H.S. 2016. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Bioresource Technology. Vol. 216 p. 824–829. DOI 10.1016/j.biortech.2016.06.014.
- GERCHMAN Y., VASKER B., TAVASI M., MISHAEL Y., KINELTAHAN Y., YEHOSHUA Y. 2017. Effective harvesting of microalgae: Comparison of different polymeric flocculants. Bioresource Technology. Vol. 228 p. 141–146. DOI 10.1016/j.biortech.2016.12.040.
- GERDE J.A., YAO L., LIO J.Y., WEN Z., WANG T. 2014. Microalgae flocculation: Impact of flocculant type, algae species and cell concentration. Algal Research. Vol. 3 p. 30–35. DOI 10.1016/j.algal.2013.11.015.
- GOMELYA M., TROKHYMENKO G., SHABLIY T. 2016. Low-waste ion exchange technology of extraction of nitrogen compounds from water. Eastern-European Journal of Enterprise Technologies. Vol. 10(81) p. 18–23. DOI 10.15587/1729-4061.2016.72328.
- GOMELYA M., TRUS I., SHABLIY T. 2014. Application of aluminium coagulants for the removal of sulphate from mine water. Chemistry and Technology. Vol. 8(2) p. 197–203. DOI 10.23939/chcht08.02.197.
- GOMELIA N., TROHYMENKO G., HLUSHKO O., SHABLIY T. 2018. Electroextraction of heavy metals from wastewater for the protection of natural water bodies from pollution. Eastern-European Journal of Enterprise Technologies. Vol. 10(91) p. 55–61. DOI 10.15587/1729-4061.2018.123929.
- GRANADOS M.R., ACIÉN F.G., GÓMEZ C., FERNÁNDEZ-SEVILLA J.M., GRIMA M.E. 2012. Evaluation of flocculants for the recovery of freshwater microalgae. Bioresource Technology. Vol. 118 p. 102–110. DOI 10.1016/j.biortech.2012.05.018.
- GREENLY J.M., TESTER J.W. 2015. Ultrasonic cavitation for disruption of microalgae. Bioresource Technology. Vol. 184 p. 276–279. DOI 10.1016/j.biortech.2014.11.036.
- GRIMA M.E., BELARBI E.-H., FERNANDEZ F.G.A., MEDINA A.R., CHISTI Y. 2003. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances. Vol. 20 p. 491–515. DOI 10.1016/S0734-9750(02)00050-2.
- KIM D., KIM E.K., KOH H.G., KIM K., HAN J.-I., CHANG Y.K. 2017. Selective removal of rotifers in microalgae cultivation using hydrodynamic cavitation. Algal Research. Vol. 28 p. 24–29. DOI 10.1016/j.algal.2017.09.026.
- KOVAL I., SHEVCHUK L., STARCHEVSKYY V. 2011. Ultrasonic intensification of the natural water and sewages disinfection. Chemical Engineering Transactions. Vol. 24 p. 1315−1320. DOI 10.3303/CET1124220
- KULIKOVA D.V., PAVLYCHENKO А.V. 2016. Estimation of ecological state of surface water bodies in coal mining region as based on the complex of hydrochemical indicators. Scientific Bulletin of National Mining University. Vol. 4 p. 62–70.
- LAAMANEN C.A., SENHORINHO G.N.A., ROSS G.M., SCOTT J.A. 2016. Heat-aided flocculation for flotation harvesting of microalgae. Algal Research. Vol. 20 p. 213–217. DOI 10.1016/j.algal.2016.10.019.
- MALCZEWSKA B. 2016. Evaluation of effectiveness of natural organic compounds removal from water in hybrid processes. Journal of Water and Land Development. No. 30 p. 81−85. DOI 101515/jwld-2016-0024.
- MALCZEWSKA B., BICZYŃSKI A. 2017. Comparison between different models for rheological characterization of sludge from settling tank. Journal of Water and Land Development. No. 34 p. 191−196. DOI 10.1515/jwld-2017-0053.
- MALOVANYY M., NIKIFOROV V., KHARLAMOVA O., SYNELNIKOV O. 2016. Production of renewable energy resources via complex treatment of cyanobacteria biomass. Chemistry and Chemical Technology. Vol. 10(2) p. 251–254. DOI 10.23939/chcht10.02.251.
- MERZLYAK M.N., CHIVKUNOVA O.B., SOLOVCHENKO A.E., MASLOVA I.P., KLYACHKO-GURVICH G.L., NAQVI K.R. 2008. Light absorption and scattering by cell suspensions of some cyanobacteria and microalgae. Russian Journal of Plant Physiology. Vol. 55(3) p. 420−425.
- PAVLICHENKO A.V., KROIK A.A. 2013. Geochemical assessment of the role of aeration zone rocks in pollution of ground waters by heavy metals. Scientific Bulletin of National Mining University. Vol. 5 p. 93–99.
- STARCHEVSKYY V., BERNATSKA N., TYPILO I., KHOMYSHYN I. 2017. Efektyvnist obroblennia stichnoi vody pidpryiemstv kharchovoi promyslovosti riznymy typamy heneratoriv kavitatsii [Efficiency of treatment of sewage of food industry enterprises by different types of cavitation generators]. Chemistry and Chemical Technology. Vol. 3 p. 358–364.
- TOPACHEVSKYI A.V., MEREZHKO A.Y., PATSERA A.T. 1969. Sposob vydeleniia vodorostei. Avtorskoe svidetelstvo 251292 (SSSR) [The method of algae thickening. Patent 251292 (USSR)]. Institut hidrobyolohii Ukrainskoi SSR. Publ. 26.08.1969. Biul. No. 27.
- VANDAMME D., FOUBERT I., MUYLAERT K. 2013. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology. Vol. 31 (4) p. 233−239. DOI 10.1016/j.tibtech.2012.12.005.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ff47cb4-9dc1-411d-9b9e-b4b4be0a7866