Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents results of the identification and assessment of relationships between river discharge dynamics and spring yield during severe hydrological drought. The study covered a weekly yield series of eight springs and the daily discharge series of river gauging stations closing catchments including these springs. The investigated area was located in the mountainous, upper reaches of the Dunajec River basin (southern Poland) and the study covered the period 1989-2018. It was assumed that river low-flow is a good indicator of hydrological drought development. Severe streamflow droughts were estimated on the basis of the threshold level method (TLM) at a truncation level of 95% on the flow duration curve (FDC). Spring yield droughts were identified in the same way, however, there were three variants of truncation criteria. Synchronicity between both types of droughts was assessed on the basis of a cooccurrence ratio. To achieve the best fit criteria analysis, time shift steps of the spring yield series in relation to the river discharge series were conducted both for individual springs and for the whole investigated group. The best results of drought co-occurrence were achieved for the spring threshold at a multiannual average yield value, especially in backward and zero time shifts for fissure springs placed in relatively small catchments. Analysis of the course of relative spring drought intensity in following time shifts allowed an indication of the typical behaviours of the aquifer spring regime in relation to hydrological drought development.
Wydawca
Czasopismo
Rocznik
Tom
Strony
11--18
Opis fizyczny
Bibliogr. 31 poz., mapa, tab., wykr.
Twórcy
autor
- University of Lodz, Faculty of Geographical Sciences, Department of Hydrology and Water Management, ul. Narutowicza 88, 90-139 Łódź, Poland
autor
- University of Lodz, Faculty of Geographical Sciences, Department of Hydrology and Water Management, ul. Narutowicza 88, 90-139 Łódź, Poland
Bibliografia
- Bartnik, A. and Moniewski, P. (2018) “Wieloletnia i sezonowa zmienność wydajności źródeł Sudetów i Karpat [Multiannual and seasonal diversity of spring discharge in the Sudetes and Carpathians],” Prace Geograficzne, 125, pp. 7–26. Available at: https://doi.org/10.4467/20833113PG.18.013.9536.
- Chełmicki, W. et al. (2011) “Distribution, discharge and regional characteristics of springs in Poland,” Episodes, 34(4), pp. 244–256. Available at: https://doi.org/10.18814/epiiugs/2011/v34i4/003.
- Choi, W., Borchardt, S.A. and Choi, J. (2022) “Human influences and decreasing synchrony between meteorological and hydrological droughts in Wisconsin since the 1980s,” Annals of the American Association of Geographers, 112(1), pp. 36–55. Available at: https://doi.org/10.1080/24694452.2021.1883416.
- Deng, Y. et al. (2023) “Groundwater recharge mechanisms in a vegetated epikarst spring catchment using water isotopes methods,” Carbonates and Evaporites, 38(19), pp. 1–9. Available at: https://doi.org/10.1007/s13146-022-00844-8.
- Ezea, V.C. et al. (2022) “A multi-criteria approach to drinking and irrigation water assessment of spring water in Igbo-Etiti, Nigeria,” Applied Water Science, 12, 220, pp. 1–20. Available at: https://doi.org/10.1007/s13201-022-01747-8.
- Hisdal, H. et al. (2001) “Drought event definition,” in S. Demuth and K. Stahl (eds.) Assessment of the regional drought impact of droughts in Europe. Freiburg: Institute of Hydrology, University of Freiburg, pp. 17–26.
- Hisdal, H. et al. (2004) “Hydrological drought characteristics,” in L.M. Tallaksen and H.A.J. van Lanen (eds.) Hydrological drought. Processes and estimation methods for streamflow and groundwater. Developments in Water Science, 48. Amsterdam: Elsevier, pp. 139–198.
- Jokiel, P. (1994) Zasoby, odnawialność i odpływ wód podziemnych strefy aktywnej wymiany w Polsce [Groundwater resources, renewal and flow in the active exchange zone in Poland]. Acta Geographica Lodziensia, 66–67. Łódź: Łódzkie Towarzystwo Naukowe.
- Korkmaz, N. (1990) “The estimation of groundwater recharge from spring hydrographs,” Hydrological Sciences Journal, 35, pp. 209–214. Available at: https://doi.org/10.1080/02626669009492419.
- Kozek, M. and Tomaszewski, E. (2022) “Dynamics of hydrological droughts propagation in mountainous catchments,” Miscellanea Geographica, 26, pp. 111–124. Available at: https://doi.org/10.2478/mgrsd-2022-0002.
- Kożuchowski, K. (2017) “Opady atmosferyczne [Precipitation],” in P. Jokiel, J. Pociask-Karteczka and W. Marszelewski (eds.) Hydrologia Polski [Hydrology of Poland]. Warszawa: PWN, pp. 36–44.
- Łabędzki, L. (2007) “Estimation of local drought frequency in Central Poland using the standardized precipitation index SPI,” Irrigation and Drainage, 56, pp. 67–77. Available at: https://onlinelibrary.wiley.com/doi/10.1002/ird.285 (Accessed: March 14, 2024).
- Michalczyk, Z. (2017) “Odpływ średni, zmienność w czasie i zróżnicowanie przestrzenne [Average runoff, time changeability and spatial differentiation],” in P. Jokiel, J. Pociask-Karteczka and W. Marszelewski (eds.) Hydrologia Polski [Hydrology of Poland]. Warszawa: PWN, pp. 153–160.
- Mudarra, M., Hartmann, A. and Andreo, B. (2019) “Combining experimental methods and modeling to quantify the complex recharge behavior of karst aquifers,” Water Resources Research, 55, pp. 1384–1404. Available at: https://doi.org/10.1029/2017WR021819.
- Nagarajan, R. (2009) Drought assessment. Dordrecht: Springer.
- Ozga-Zielińska, M. (1990) “Niżówki i wezbrania – ich definiowanie i modelowanie [Droughts and floods – their definition and modeling],” Przegląd Geofizyczny, 1–2, pp. 33–44.
- Raczyński, K. and Dyer, J. (2020) “Multi-annual and seasonal variability of low-flow river conditions in southeastern Poland,” Hydrological Sciences Journal, 65(15), pp. 2561–2576. Available at: https://doi.org/10.1080/02626667.2020.1826491.
- Sene, K. (2010) Hydrometeorology. Forecasting and applications. Dordrecht–Heidelberg–London–New York: Springer.
- Smakhtin, V.U. (2001) “Low flow hydrology: A review,” Journal of Hydrology, 240, pp. 147–186. Available at: https://doi.org/10.1016/S0022-1694(00)00340-1.
- Tallaksen, L.M. (1995) “A review of baseflow recession analysis,” Journal of Hydrology, 165(1–4), pp. 349–370. Available at: https://doi.org/10.1016/0022-1694(94)02540-R.
- Teutschbein, C. et al. (2022) “Streamflow droughts in Sweden: Spatiotemporal patterns emerging from six decades of observations,” Journal of Hydrology: Regional Studies, 42, 101171, pp. 1–26. Available at: https://doi.org/10.1016/j.ejrh.2022.101171.
- Tokarczyk, T. (2013) “Classification of low flow and hydrological drought for a river basin,” Acta Geophysica, 61, pp. 404–421. Available at: https://doi.org/10.2478/s11600-012-0082-0.
- Tomaszewski, E. (2007) “Kilka uwag o zastosowaniu metody źródeł reprezentatywnych do oceny wielkości oceny zasilania podziemnego rzeki [A few remarks about application of the representative springs method],” in P. Jokiel, P. Moniewski and M. Ziułkiewicz (eds.) Źródła Polski. Wybrane problemy krenologiczne [Springs of Poland. Selected crenological problems]. Łódź: Wydział Nauk Geograficznych Uniwersytetu Łódzkiego, pp. 163–171.
- Tomaszewski, E. (2012) “Wieloletnia i sezonowa dynamika niżówek w rzekach środkowej Polski [Multiannual and seasonal Dynamics of low flows in rivers of central Poland],” Łódź: Wydawnictwa Uniwersytetu Łódzkiego. Available at: https://dspace.uni.lodz.pl/xmlui/handle/11089/41804 (Accessed: March 14, 2024).
- Tomaszewski, E. and Kozek, M. (2021) “Dynamics, range, and severity of hydrological drought in Poland,” in M. Zeleňáková, K. Kubiak-Wójcicka and A.M. Negm (eds.) Management of Water Resources in Poland. Springer Water. Cham, Switzerland: Springer Nature, pp. 229–252. Available at: https://link.springer.com/chapter/10.1007/978-3-030-61965-7_12 (Accessed: March 14, 2024).
- Tomaszewski, E. and Kubiak-Wójcicka, K. (2021) “Low-flows in Polish rivers,” in M. Zeleňáková, K. Kubiak-Wójcicka and A.M. Negm(eds.) Management of water resources in Poland. Springer Water. Cham, Switzerland: Springer Nature, pp. 205–228. Available at: https://link.springer.com/chapter/10.1007/978-3-030-61965-7_11 (Accessed: March 14, 2024).
- Wilhelmi, O.V., Hubbard, K.G. and Wilhite, D.A. (2002) “Spatial representation of agroclimatology in a study of agricultural drought,” International Journal of Climatology, 22, pp. 1399–1414. Available at: https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.796 (Accessed: March 14, 2024).
- Yabusaki, S. and Asai, K. (2023) “Estimation of groundwater and spring water residence times near the coast of Fukushima, Japan,” Groundwater, 61(3), pp. 431–445. Available at: https://doi.org/10.1111/gwat.13288.
- Yevjevich, V. (1967) “An objective approach to definitions and investigations of continental hydrologic drought,” Hydrology Paper, 23. Fort Collins, Colorado: Colorado State University.
- Yildirim, I. and Aksoy, H (2022) “Intermittency as an indicator of drought in streamflow and groundwater,” Hydrological Processes, 36(6), e14615, pp. 1–17. Available at: https://doi.org/10.1002/hyp.14615.
- Ying, Z. et al. (2024) “Developing a conceptual model of groundwater Surface water interactions in a drought sensitive lowland catchment using multi-proxy data,” Journal of Hydrology, 628, 130550. Available at: https://doi.org/10.1016/j.jhydrol.2023.130550.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fed5640-e50e-4fe5-9cc1-b6858c467de5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.