PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Annealing on Nature of Corrosion Damages of Medium-nickel Austenitic Cast Iron

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Within the presented research, effect of annealing on nature of corrosion damages of medium-nickel austenitic nodular cast iron castings, containing 5.5% to 10.3% Ni, was determined. Concentration of nickel, lower than in the Ni-Resist cast iron, was compensated with additions of other austenite-stabilising elements (manganese and copper). In consequence, raw castings with austenitic matrix structure and gravimetrically measured corrosion resistance increasing along with nickel equivalent value EquNi were obtained. Annealing of raw castings, aimed at obtaining nearly equilibrium structures, led to partial austenite-to-martensite transformation in the alloys with EquNi value of ca. 16%. However, corrosion resistance of the annealed alloys did not decrease in comparison to raw castings. Annealing of castings with EquNi value above 18% did not cause any structural changes, but resulted in higher corrosion resistance demonstrated by smaller depth of corrosion pits.
Rocznik
Strony
85--90
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Technical and Economic Sciences, Witelon State University of Applied Science in Legnica, Sejmowa 5A, 59-220 Legnica, Poland
autor
  • Department of Foundry Engineering, Plastics and Automation, Wroclaw University of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Department of Advanced Materials Technologies, Wroclaw University of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
Bibliografia
  • [1] Podrzucki, C. (1991). Cast iron. Structure, properties and application. Vol. 1, 2. Krakow: Editorial Office ZG STOP (in Polish).
  • [2] Janus, A. (2013). Forming of castings structure of austenitic cast iron Ni-Mn-Cu. Wroclaw: Editorial Office of Wrocław University of Technology (in Polish).
  • [3] Pietrowski, S. & Bajerski, Z. (2005). Ni-Resist cast iron with reduced nickel content. Archives of Foundry. 5(17), 445-458 (in Polish).
  • [4] Lacaze, J. (2001). Discussion of „The role of manganese and copper in the eutectoid transformation of spheroidal graphite cast iron. Metallurgical and Materials Transactions A. 32(6), 2133-2135.
  • [5] Seyedi, S. & Rikhtegar, R. (1994). Reducing the nickel content by using manganese in austenitic ductile iron. Jourmnal of Iranian Fundryment’s Society. 14(4), 122-136.
  • [6] Szpunar, E. (1967). The influence of copper on the structure of the austenitic ductile iron Ni-Mn-Cu. Proceedings of Institute of Precision Mechanics. 1, 12-25. (in Polish).
  • [7] Medyński, D. & Janus, A. (2015). Effect of nickel equivalent on structure and corrosion resistance of nodular cast iron Ni- Mn-Cu. Archives of Foundry Engineering. 15(1), 69-74.
  • [8] Medyński, D. & Janus, A. (2016). Effect of austenite transformation on abrasive wear and corrosion resistance of spheroidal Ni-Mn-Cu cast iron. Archives of Foundry Engineering. 16(3), 63-66.
  • [9] Janus, A. & Stachowicz, M. (2014). Thermodynamic stability of austenitic Ni-Mn-Cu cast iron. Metalurgija. 53(3), 353-356.
  • [10] Gumienny, G. (2010). Bainitic-martensitic nodular cast iron with carbides. Archives of Foundry Engineering. 10(2), 63- 68.
  • [11] Janus A., Granat K. (2005). Abrasion resistant austenitic-bainitic cast iron. Report of Institute of Machine Engineering and Automation of Wroclaw University of Technology. SPR 28 (in Polish).
  • [12] Ahmadabadi, M.N. & Shamloo, R. (2001). Control of austenitic transformations in ductile iron aided by calculation of Fe-C-Si-X phase boundaries. Journal of Phase Equilibria. 22(3), 1994-1998.
  • [13] Lacaze, J., Wilson, C. & Bak, C. (1994). Experimental-study of the eutectoid transformation in spheroidal graphite cast-iron. Scandinavian Journal of Metallurgy. 23(4), 151-163.
  • [14] Bala, H. (2002). Corrosion of materials - theory and practice. Czestochowa: Editorial Office of Process Engineering. Materials and Applied Physics of Czestochowa University of Technology. (in Polish).
  • [15] Rączka, J.S., Tabor, A. & Kowalski, A. (2000). Resistance of austenitic-bainitic nodular cast iron to corrosive action of sulphuric, nitric and hydrochloric acids. Solidification of Metals and Alloys. 2(44), 527-535. (in Polish).
  • [16] Hryniewicz, T., Rokosz, K. (2010). Theoretical basis and practical aspects of corrosion. Koszalin: Editorial Office of Koszalin University of Technology (in Polish).
  • [17] Hryniewicz, T. (2005). Electrochemistry for surface engineering. Koszalin: Editorial Office of Koszalin University of Technology. (in Polish).
  • [18] Baszkiewicz, J., Kamiński, M. (1997). Basics of corrosion of materials. Warsaw: Editorial Office of Warsaw University of Technology (in Polish).
  • [19] Chung-Kwei, L., Cheng-Hsun, H., Yin-Hwa, C., Keng- Liang, O. & Sheng-Long, L. (2015). A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron. Applied Surface Science. 324, 13-19.
  • [20] Cheng-Hsun, H. & Ming-Li, C. (2010). Corrosion behavior of nickel alloyed and austempered ductile iron in 3.5% sodium chloride. Corrosion Science. 52, 2945-2949.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fead323-8a81-446b-9718-c3f834db3bb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.