PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting air quality trends in Malaysia’s largest cities : the role of urban population dynamics and COVID-19 effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to explore the relationship between the Air Quality Index (AQI), COVID-19 incidence rates, and population density within Malaysia’s ten most populous cities from January 2018 to December 2021. Data were sourced from the Department of Statistics Malaysia, the World Air Quality Index Project, and Our World in Statistics. The methodology integrated population-based city classification and AQI assessment, cluster analysis through SPSS, and Generalized Additive Mixed Model (GAMM) analysis using R Studio despite encountering a data gap in AQI for five months in 2019. Cities were organized into three clusters based on their AQI: Cluster One included Ipoh, Penang, Kuala Lumpur, and Melaka, Cluster Two comprised Kuantan, Seremban, Johor Bahru, and Kota Bharu, Cluster Three featured Kota Kinabalu and Kuching. GAMM analysis revealed prediction accuracies for AQI variations of 58%, 60%, and 41% for the respective clusters, indicating a notable impact of population density on air quality. AQI variations remained unaffected by COVID-19, with a forecasted improvement in air quality across all clusters. The paper presents novel insights into the negligible impact of COVID-19 on AQI variations and underscores the predictive power of population dynamics on urban air quality, offering valuable perspectives for environmental and urban planning.
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • International College, Krirk University, Thailand
  • School of Economics and Management, Quanzhou University of Information Engineering, China
autor
  • JinWen University of Science and Technology, Taiwan
autor
  • School of Accounting, Hangzhou Dianzi University, China
Bibliografia
  • 1. Augustin, N. H., Musio, M., von Wilpert, K., Kublin, E., Wood, S. N. & Schumacher, M. (2009). Modeling Spatiotemporal Forest Health Monitoring Data. Journal of the American Statistical Association, 104(487), pp. 899-911. DOI:10.1198/jasa.2009.ap07058
  • 2. Barouki, R., Kogevinas, M., Audouze, K., Belesova, K., Bergman, A., Birnbaum, L. & Vineis, P. (2021). The COVID-19 pandemic and global environmental change: Emerging research needs. Environment International, 146, 106272. DOI:10.1016/j.envint.2020.106272
  • 3. Chaudhuri, S. & Chowdhury, A. R. (2018). Air quality index assessment prelude to mitigate environmental hazards. Natural Hazards, 91(1), pp. 1-17.DOI:10.1007/s11069-017-3080-3
  • 4. Chen, C. (2000). Generalized additive mixed models. Communications in Statistics - Theory and Methods, 29(5-6), pp. 1257-1271.DOI:10.1080/03610920008832543
  • 5. Chenarides, L., Grebitus, C., Lusk, J. L. & Printezis, I. (2021). Food consumption behavior during the COVID-19 pandemic. Agribusiness, 37(1), pp. 44-81. DOI:,DOI:10.1002/agr.21679
  • 6. Constantinescu, C. (2019, April 25). Using generalised additive mixed models (gamms) to predict visitors to edinburgh and craigmillar castles. Technical blog from our data science team. https://thedatalab.com/tech-blog/using-generalised-additive-mixed-models-gamms-to-predict-visitors-to-edinburgh-and-craigmillar-castles/
  • 7. Department of Environment. (2013). General Information of Air Pollutant Index. Retrieved May 6 from http://www.doe.gov.my/webportal/en/info-umum/bahasa-inggeris-general-information-of-air-pollutant-index/
  • 8. Department of Statistics Malaysia Official Portal. (2020). Population by state, administrative district and sex, 2016-2018. Retrieved April 25 from https://www.dosm.gov.my/v1/index.php?r=column3/accordion&menu_id=aHhRYUpWS3B4VXlYaVBOeUF0WFpWUT09
  • 9. Environment and Climate Change Canada. (2021, April 28, 2021). About the Air Quality Health Index. Retrieved May 6 from https://www.canada.ca/en/environment-climate-change/services/air-quality-health-index/about.html
  • 10. Gkatzelis, G. I., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R., Lange, A. C. & Kiendler-Scharr, A. (2021). The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations. Elementa: Science of the Anthropocene, 9(1). DOI:10.1525/elementa.2021.00176
  • 11. Hastie, T. J. & Tibshirani, R. J. (1990). Generalized Additive Models. Taylor & Francis. https://books.google.co.th/books?id=qa29r1Ze1coC
  • 12. Hormozi, A. M. & Giles, S. (2004). Data Mining: A Competitive Weapon for Banking and Retail Industries. Information Systems Management, 21(2), pp. 62-71. DOI:10.1201/1078/44118.21.2.20040301/80423.9
  • 13. Jenkins, N. (2015, October 4, 2015). The current haze over Southeast Asia could be among the worst ever. Time. https://time.com/4060786/haze-singapore-indonesia-malaysia-pollution/
  • 14. Kaewrat, J. & Janta, R. (2021). Effect of COVID-19 Prevention Measures on Air Quality in Thailand. Aerosol and Air Quality Research, 21(3), 200344. DOI:10.4209/aaqr.2020.06.0344
  • 15. Kotsiou, O. S., Kotsios, V. S., Lampropoulos, I., Zidros, T., Zarogiannis, S. G. & Gourgoulianis, K. I. (2021). PM2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods. International Journal of Environmental Research and Public Health, 18(10), 5088. DOI:10.3390/ijerph18105088
  • 16. Lee, M. & Finerman, R. (2021). COVID-19, commuting flows, and air quality. Journal of Asian Economics, 77, 101374. DOI:10.1016/j.asieco.2021.101374
  • 17. Li, J., Hallsworth, A. G. & Coca‐Stefaniak, J. A. (2020). Changing Grocery Shopping Behaviours Among Chinese Consumers At The Outset Of The COVID‐19 Outbreak. Journal of Economic and Human Geography, 111(3), pp. 574-583. DOI:10.1111/tesg.12420
  • 18. Li, L., Lin, G.-Z., Liu, H.-Z., Guo, Y., Ou, C.-Q. & Chen, P.-Y. (2015). Can the Air Pollution Index be used to communicate the health risks of air pollution? Environmental Pollution, 205, pp. 153-160. DOI:,DOI:10.1016/j.envpol.2015.05.038
  • 19. Liao, Q., Yuan, J., Dong,M., Yang,L., Fielding,R. & Lam, W.W.T. (2020). Public Engagement and Government Responsiveness in the Communications About COVID-19 During the Early Epidemic Stage in China: Infodemiology Study on Social Media Data. J Med Internet Res, 22(5), e18796. DOI:10.2196/18796
  • 20. Lim, Y. K., Kweon, O. J., Kim, H. R., Kim, T.-H. & Lee, M.-K. (2021). The impact of environmental variables on the spread of COVID-19 in the Republic of Korea. Scientific Reports, 11(1), 5977. DOI:10.1038/s41598-021-85493-y
  • 21. Liu, Q., Xu, S. & Lu, X. (2021). Association between air pollution and COVID-19 infection: evidence from data at national and municipal levels. Environ Sci Pollut Res Int, 28(28), pp. 37231-37243. DOI:10.1007/s11356-021-13319-5
  • 22. Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C. & Rodés-Guirao, L. (2021). A global database of COVID-19 vaccinations. Nature Human Behaviour, 5(7), pp. 947-953. DOI:10.1038/s41562-021-01122-8
  • 23. Meo, S. A., Abukhalaf, A. A., Alessa, O. M., Alarifi, A. S., Sami, W. & Klonoff, D. C. (2021). Effect of Environmental Pollutants PM2.5, CO, NO2, and O3 on the Incidence and Mortality of SARS-CoV-2 Infection in Five Regions of the USA. International Journal of Environmental Research and Public Health, 18(15), 7810. DOI:10.3390/ijerph18157810
  • 24. Pinheiro, J. C. & Bates, D. (2009). Mixed-Effects Models in S and S-PLUS. Springer. https://books.google.co.th/books?id=y54QDUTmvDcC
  • 25. Plaia, A. & Ruggieri, M. (2011). Air quality indices: a review. Reviews in Environmental Science and Bio/Technology, 10(2), pp. 165-179. DOI:10.1007/s11157-010-9227-2
  • 26. Tang, W., Hu, T., Yang, L. & Xu, J. (2020). The role of alexithymia in the mental health problems of home-quarantined university students during the COVID-19 pandemic in China. Pers Individ Dif, 165, 110131. DOI:10.1016/j.paid.2020.110131
  • 27. The World Air Quality Index Project. (2022). Air Quality Historical Data Platform. https://aqicn.org/data-platform/register
  • 28. Valdés Salgado, M., Smith, P., Opazo, M. A. & Huneeus, N. (2021). Long-Term Exposure to Fine and Coarse Particulate Matter and COVID-19 Incidence and Mortality Rate in Chile during 2020. International Journal of Environmental Research and Public Health, 18(14), 7409. DOI:10.3390/ijerph18147409
  • 29. Wang, J., Wang, J. X. & Yang, G. S. (2020). The Psychological Impact of COVID-19 on Chinese Individuals. Yonsei Med J, 61(5), pp. 438-440. DOI:10.3349/ymj.2020.61.5.438
  • 30. Wetchayont, P. (2021). Investigation on the Impacts of COVID-19 Lockdown and Influencing Factors on Air Quality in Greater Bangkok, Thailand. Advances in Meteorology, 6697707. DOI:10.1155/2021/6697707
  • 31. Wong, W. M., Wang, X. & Wang, Y. (2023). The intersection of COVID-19 and air pollution: A systematic literature network analysis and roadmap for future research. Environ Res, 237(Pt 2), 116839. DOI:10.1016/j.envres.2023.116839
  • 32. Wood, S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics, 62(4), pp. 1025-1036. DOI:10.1111/j.1541-0420.2006.00574.x
  • 33. Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(1), pp. 3-36. DOI:,DOI:10.1111/j.1467-9868.2010.00749.x
  • 34. Wood, S. N. (2017). Generalized Additive Models: An Introduction with R (2nd ed.). CRC Press. https://books.google.co.th/books?id=HL-PDwAAQBAJ
  • 35. Yang, A., Qiu, Q., Kong, X., Sun, Y., Chen, T., Zuo, Y. & Peng, A. (2020). Clinical and Epidemiological Characteristics of COVID-19 Patients in Chongqing China. Front Public Health, 8, 244. DOI:10.3389/fpubh.2020.00244
  • 36. Zhang, Y. & Ma, Z. F. (2020). Impact of the COVID-19 Pandemic on Mental Health and Quality of Life among Local Residents in Liaoning Province, China: A Cross-Sectional Study. Int J Environ Res Public Health, 17(7). DOI:10.3390/ijerph17072381
  • 37. Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer. https://books.google.co.th/books?id=vQUNprFZKHsC
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fe0e0d6-bcf5-44fe-8bd0-8721d44231d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.