PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of changes in electrical resistance of zinc oxide nanostructures under the influence of variable gaseous environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the investigations concerning the influence of the changing gas environment on electrical resistance of zinc oxide (ZnO) nanostructures. The investigated structures are wide-gap semiconductors with the morphology of ZnO flower-shaped agglomerates of nanostructures. The resistance changes of these nanostructures were tested under the influence of various gases such as nitrogen dioxide (NO2), hydrogen (H2), ammonia (NH3) and also of humidity changes of carrier gases. To clarify the mechanisms of physicochemical processes in ZnO nanostructures during their interaction with gaseous environments, investigations were performed in two different carrier gases, viz. in synthetic air and in nitrogen. The study was carried out at a structure temperature of 200◦C.
Rocznik
Strony
635--639
Opis fizyczny
Bibliogr. 17 poz., wykr., rys.
Twórcy
autor
  • Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
autor
  • Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
  • Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody St., 44-100 Gliwice, Poland
autor
  • Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
Bibliografia
  • [1] Y.X. Yu and D.S. Xu, “Single-crystalline TiO2 nanorods: highly active and easily recycled photocatalysts”, Applied Catalysis B: Environmental 73 (1-2), 166-171 (2007).
  • [2] W.W. Guo, T.M. Liu, and L. Huang, “Gas-sensing property improvement of ZnO by hierarchical flower - like architectures”, Materials Letters 65 (23-24), 3384-3387 (2011).
  • [3] W. Zeng and T.M. Liu, “Gas-sensing properties of SnO2-TiO2- based sensor for volatile organic compound gas and its sensing mechanism”, Physica B: Condensed Matter 405 (5), 1345-1348 (2010).
  • [4] L. You, Y.F. Sun, J. Ma, and Y. Guan, “Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment”, Sensors and Actuators B: Chemical 157 (2), 401-407 (2011).
  • [5] N. Yamazoe, K. Suematsu, and K. Shimanoe, “Extension of receptor function theory to include two types of adsorbed oxygen for oxide semiconductor gas sensors”, Sensors and Actuators, B: Chemical 163 (1), 128-135 (2012).
  • [6] T. Pustelny, M. Setkiewicz, S. Drewniak, E. Maciak, A. Stolarczyk, M. Procek, M. Urbańczyk, K. Gut, Z. Opilski, I. Pasternak, and W. Strupinski, “The Influence of humidity on the resistance structures with graphene sensor layer”, Acta Physica Polonica A 122(5), 870-873 (2012).
  • [7] T. Pustelny , M. Setkiewicz, S. Drewniak, E. Maciak, A. Stolarczyk, M. Procek, M. Urbańczyk, K. Gut, Z. Opilski, I. Pasternak, and W. Strupinski, “The sensibility of resistance sensor structures with graphene to the action of selected gaseous media”, Bull. Pol. Ac: Tech. 61 (2), 293-300 (2013).
  • [8] S. Drewniak, T. Pustelny, M. Setkiewicz, E. Maciak, M. Urbańczyk, M. Procek, Z. Opilski, J. Jagiełło, and L. Lipińska, “Investigations of SAW Structures with oxide graphene layer to detection of selected gases”, Acta Physica Polonica A 124(3), 402-405 (2013).
  • [9] AM-H. Seo, M. Yuasa, T. Kida, J-S. Huh, N. Yamazoe, and K. Shimanoe, “Microstructure control of TiO2 nanotubular films for improved VOC sensing”, Sensors and Actuators, B: Chemical 154 (2), 251-256 (2011).
  • [10] M.E. Franke, T.J. Koplin, and U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?”, Small 2, 36-50 (2006).
  • [11] V.I. Gaman, “Basic physics of semiconductor hydrogen sensors”, Russian Physics J. 51, 425-441 (2008).
  • [12] N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology”, Sensors and Actuators, B: Chemical 138, 100-107 (2009).
  • [13] V.I. Gaman, “Physical principles of operation of oxidizing gas sensors based on metal oxide semiconductors”, Russian Physics J. 54, 1364-1371 (2012).
  • [14] T. Pustelny, M. Procek, E. Maciak, A. Stolarczyk, S. Drewniak, M. Urbańczyk, M. Setkiewicz, K. Gut, and Z. Opilski, “Gas sensors based on nanostructures of semiconductors TiO2 and ZnO”, Bull. Pol. Ac: Tech. 60 (4), 853 859 (2012).
  • [15] B. Madavali, H.S. Kim, and S.J. Hong, “Thermally decomposition of high quality flower-like ZnO nanorods from zinc acetate dihydrate”, Materials Letters 132, 342-345 (2014).
  • [16] M. Procek and T. Pustelny, “Analysis of the responses of metaloxide semiconductor nanostructures to nitrogen dioxide”, Acta Physica Polonica A 124(3), 529-533 (2013).
  • [17] S. Pati, P. Banerji, and S.B. Majumder, “n- to p- type carrier reversal in nanocrystalline indium doped ZnO thin film gas sensors”, Int. J. Hydrogen Energy 39, 15134-15141 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fdfa204-bde2-4a6c-8099-7662ee1a47fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.