PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculation of Surface Tension of Multicomponent Silicate Solutions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface phenomena play a major role in metallurgical processes; their operation results, among others, from the surface tension of liquid oxidic systems. One of the methods of determining surface tension of oxidic systems is performing calculations with Butler’s method. Surface tension was calculated for two- and three-component liquid oxidic systems typical of metallurgical processes. The determined dependence of surface tension in FeO-SiO2 at temp. 1773 K and CaO-SiO2 at temp.1873 K showed that with the growing participation of SiO2 surface tension decreased. Analogous calculations were performed for three-component systems: CaO-Al2O3-SiO2 and MnO-Al2O3- SiO2. The results of calculations of surface tension were determined for temp. 1873 K and compared with the results obtained by T. Tanaka et al. [19]. In both cases the increase of Al2O3 content resulted in a growth of surface tension. The simulation results were higher than experimental result, as compared to the literature data.
Rocznik
Strony
29--35
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
  • AGH, University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
Bibliografia
  • [1] Kalisz, D. (2014). Modeling physicochemical properties of mold slag. Archives of Metallurgy and Materials. 59(1), 149-155.
  • [2] Kalisz, D., Sinelnikov, V.O. & Kuglin, K. (2018). Investigation of the physicochemical properties of slag splashed on the lining of oxygen converter. Refractories and Industrial Ceramics. 58(5), 463-468.
  • [3] Baricova, D., Pribulova, A., Bulko, B., Demeter, P. (2019). Final chemical and mineralogical composition of oxygen converter slag. International Multidisciplinary Scientific Geo Conference: SGEM; Sofia, 19, (1.3), 827-834. DOI:10.5593/sgem2019/1.3/S04.106.
  • [4] Sinelnikov, V.O., Kalisz, D. & Kuzemko, R.D. (2018). Study of the phase and mineralogical properties of converter slag during splashing to improve lining resistance. Refractories and Industrial Ceramics. 59(4), 403-409.
  • [5] Baricová, D., Pribulová, A., Futáš, P., Bul’ko, B. & Demeter, P. (2018). Change of the chemical and mineralogical composition of the slag during oxygen blowing in the oxygen converter process. Metals. 8(10), 844.
  • [6] Semencenko, V.K. (1965). Phenomena in Metals and Alloys. Pergamon Press.
  • [7] Pytel, K., Anioła-Kusiak, A., Choma, E., Ciaś, H., Ciembronowicz, E., Kalisz, D., Kostołowska, M., Iwanciw, J., Schmidt, K. (1999). Surface tensions at the metal-slag-gas border. Atlas. Measurement methodology and chart composition. Kraków: Akademia Górniczo – Hutnicza. (in Polish).
  • [8] King, B. (1953). The physical chemistry of melts. Londyn: Inst. of Mining and Metallurgy.
  • [9] Boni, E. & Derge, G. (1956). Surface tension of silicates. JOM – The Journal of Minerals, Metals &Materials Society (TMS). 8, Trans 206, 53-59.
  • [10] Mazanek T., Mamro K. (1969). Theoretical foundations of iron metallurgy. Katowice: Wydawnictwo Śląsk. (in Polish).
  • [11] Butler, J.A. Proc. Royal Society, London A, 135, 348.
  • [12] Nakamoto, M., Kiyose, A., Tanaka, T. & Holappa, M. (2007). Surface tension of trenary silicate melts containing Al2O3, CaO, FeO, MgO or MnO. ISIJ International. 47, 38-43.
  • [13] Min, D.J. & Tsukihashi, F. (2017). Recent advances in understanding physical properties of metallurgical slags. Metals and Materials International. 23, 1, 1-19.
  • [14] Sharama, S.K. & Philobrook, W.O. (1971). The influence of atmosphere on surface tension of calcium and manganese – silicate melts, Transactions of the Iron and Steel Institute of Japan ISI of Japan. Proc. ICSTIS, Suppl. T 11, 569.
  • [15] Mukai, K. (2019). Interfacial physical chemistry of high – temperature melts. CRC Press. 120.
  • [16] Koijoma, Y. (1971). Measurments of Surface tension of CaO-SiO2 and CaO-SiO2-Al2O3 slag containing sulfur. Transactions of the Iron and Steel Institute of Japan ISI of Japan. 11, 349.
  • [17] Turkdogan. E.T. (1983). Physicochemical properties of molten slags and glasses. The Metals Society.
  • [18] David–Pye, L., Montenoro, A., Innocent, J. (2005). Properties of Glass – Forming Melts. Taylor & Francis. CRC Press 512.
  • [19] Tanaka, T., Kitamura, T. & Back, I.A. (2006). Evaluation of Surface tension of molten ionic mixtures. ISIJ International. 46, 400-406.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fde0c7e-7643-43f5-8352-3646b8b191aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.