Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A double-jet electrospinning method was adopted to fabricate In2O3/Co3O4 nanofibers (NFs). The sensitivity of In2O3/Co3O4NFs and In2O3NFs were compared and analyzed, and the morphology, structure, chemical composition, and gas-sensing properties of the samples were comprehensively characterized. The results show that the introduction of Co3O4can improve the response of In2O3/Co3O4to acetone, to 29.52 (In2O3/Co3O4) and 12.34 (In2O3) to 200 ppm acetone at 2000°C, respectively. In addition, the doping of Co3O4was found to reduce the optimum working temperature of pure In2O3 from 275°C to 200°C. The composite of Co3O4and In2O3not only enhances the sensing performance, but also leads to a conversion of p-n conductivity type. The phenomenon of the p-n transition is relevant to operating temperature and proportion of In2O3and Co3O4. While the enhanced acetone sensing properties of In2O3/Co3O4NFs may be attributed to the p-n hetero-junction between n-type In2O3 and p-type Co3O4 crystalline grains, which promotes the electron migration. The synergistic effects between In2O3and Co3O4and the large specific surface area of NFs additionally contribute to the improvements of acetone sensing performance.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
202--213
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- School of Physics and Electronic Science, Shandong Normal University, Jinan 250014, China
autor
- School of Physics and Electronic Science, Shandong Normal University, Jinan 250014, China
autor
- School of Physics and Electronic Science, Shandong Normal University, Jinan 250014, China
autor
- School of Physics and Electronic Science, Shandong Normal University, Jinan 250014, China
Bibliografia
- [1] Jiang L, Chen Z, Cui Q, Xu S, Tang F. Experimental and DFT-D3 study of sensitivity and sensing mechanism of ZnSnO3 nanosheets to C3H6O gas. J Mater Sci. 2022;57:3231–51. doi: 10.1007/s10853-021-06855-5.
- [2] Galassetti PR, Novak B, Nemet D, Rose-Gottron C, Cooper DM, Meinardi S, et al. Breath ethanol and acetone as indicators of serum glucose levels: an initial report. Diabetes Technol. Ther. 2005;7:115–23. doi: 10.1089/dia.2005.7.115.
- [3] Joshi S, Tonde S, Wakhure U, Bornare D, Chatterjee A, Syed K, Sunkara MV. Hierarchical CaTiO3 microspheres for acetone sensing. Sens. Actuators B: Chem. 2022;359:131621. doi: 10.1016/j.snb.2022.131621.
- [4] Wang Y, Tan HJ, Sang LX, Xie YY, Jia FC, Zhou T, Yin GC, et al. Enhanced acetone sensing performance of Ti3C2 MXene/alpha-Fe2O3 nanorod composite. J Mater Sci. 2023;58:5319–33. doi: 10.1007/s10853-023-08328-3.
- [5] Cheng QL, Wang XD, Huang DD, Wang YC, Tan X, Chen YW, et al. Highly sensitive and fast response acetone gas sensor based on Co3O4-ZnO heterojunction assembled by porous nanoflowers. J Mater SciMater Electron. 2023;34:128. doi: 10.1007/s10854-022-09566-y.
- [6] Guo R, Hou XH, Shi CX, Zhang WP, Zhou Y. MOF-derived Co3O4 hierarchical porous structure for enhanced acetone sensing performance with high sensitivity and low detection limit. Sens Actuators B: Chem. 2023;376:132973. doi: 10.1016/j.snb.2022.132973.
- [7] Blessi S, Manikandan A, Anand S, Sonia MML, Vinosel VM, Alosaimi AM, et al. Enhanced electrochemical performance and humidity sensing properties of Al3+ substituted mesoporous SnO2 nanoparticles. Phys E. 2021;133:114820. doi: 10.1016/j.physe.2021.114820.
- [8] Liu YJ, Gui YG, Chen XP. Adsorption and sensing performances of ZnO-g-C3N4 monolayer toward SF6 decomposition products. Phys E. 2021;134:8. doi: 10.1016/j.physe.2021.114909.
- [9] Chaohan H, Xiaowei L, Yu L, Xinghua L, Changlu S, Jisong R, et al. Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination. J Hazard Mater. 2021;403:124093. doi: 10.1016/j.jhazmat.2020.124093.
- [10] Kumar R, Khanna A, Tripathi P, Nandedkar V, Potdar S, Chaudhari S, Bhatti S. CuO–SnO2 element as hydrogen sulfide gas sensor prepared by a sequential electron beam evaporation technique. J Phys D: Appl Phys. 2003;36:2377. doi: 10.1088/0022-3727/36/19/010.
- [11] Wu MR, Li WZ, Tung CY, Huang CY, Chiang YH, Liu PL, Horng RH. NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition. Sci Rep. 2019;9:7459. doi: 10.1038/s41598-019-43752-z.
- [12] Ran Y, Cui X, Lai T, Yao L, Rongjun Z, Wang L, Wang Y. Sm-doped SnO2 nanoparticles synthesized via solvothermal method as a high-performance formaldehyde sensing material for gas sensors. J Mater Sci: Mater Electron. 2021;32:8249–64.
- [13] Li Y, Song S, Zhang L-B, Lian X-X, Shan L-X, Zhou Q-J. Fabrication of hollow porous ZnO2ZnS heterostructures via hydrothermal method and enhanced gas-sensing performance for ethanol. J Alloys Compd. 2021;855:157430. doi: 10.1016/j.jallcom.2020.157430.
- [14] Al-Hazeem NZ, Ahmed NM, Matjafri MZ, Bououdina M. Hydrogen gas sensor based on nanofibers TiO2-PVP thin film at room temperature prepared by electrospinning. Microsyst Technol. 2021;27:293–9. doi: 10.1007/s00542-020-04952-0.
- [15] Marimuthu G, Palanisamy G, Pazhanivel T, Bharathi G, Cristopher MM, Jeyadheepan K. Nanorod like NiCo2O4 nanostructure for high sensitive and selective ammonia gas sensor. J Mater Sci Mater Electron. 2020;31:1951–9. doi: 10.1007/s10854-019-02714-x.
- [16] Pi M, Zheng L, Luo H, Duan S, Li C, Yang J, et al. Improved acetone photo-gas sensing performance based on optimization of transition metal doped WO3 system at room temperature. J Phys D: Appl Phy. 2021;54:155107. doi: 10.1088/1361-6463/abd8f0.
- [17] Su C, Zhang L, Han Y, Ren C, Chen X, Hu J, et al. Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sens Actuators B: Chem: 2019;296:126642. doi: 10.1016/j.snb.2019.126642.
- [18] Chen R, Lan G, Wang N, Yan W, Yi J, Wei W. Highly sensitive fiber-optic SPR sensor with surface coated TiO2/MWCNT composite film for hydrogen sulfide gas detection. J Phys D: Appl Phys. 2022;55:105108. doi: 10.1088/1361-6463/ac378f.
- [19] Huang X, Tang Z, Tan Z, Sheng S, Zhao Q. Hierarchical In2O3 nanostructures for improved formaldehyde sensing performance. J Mater Sci Mater Electro. 2021;32:11857–11864. doi: 10.1007/s10854-021-05815-8.
- [20] Shen C, Xu N., Guan R, Yue LU, Zhang W-H. Highly sensitive ethanol gas sensor based on In2O3 spheres. Ionics. 2021;27:3647–53. doi: 10.1007/s11581-021-04057-2.
- [21] Zhao C, Gong H, Niu G, Wang F. Electrospun Ca-doped In2O3 nanotubes for ethanol detection with enhanced sensitivity and selectivity. Sens Actuators B: Chem. 2019;299:126946. doi: 10.1016/j.snb.2019.126946.
- [22] Sui N, Zhang P, Zhou T, Zhang T. Selective ppb-level ozone gas sensor based on hierarchical branchlike In2O3 nanostructure. Sens Actuators B: Chem. 2021;446:129612. doi: 10.1016/j.snb.2021.129612.
- [23] Zhang B, Bao N, Wang T, Xu Y, Dong Y, Ni Y, et al. High-performance room temperature NO2 gas sensor based on visible light irradiated In2O3 nanowires. J Alloys Compd. 2021;867:159076. doi: 10.1016/j.jallcom.2021.159076.
- [24] Chethana DM, Thanuja TC, Mahesh HM, Kiruba MS, Barshilia HC, Yallappa S, Manjanna J. Heterostructure Fe2O3–In2O3 nanoparticles as hydrogen gas sensor. J Electron Mater. 2021;50:4314–23.doi: 10.1007/s11664-021-08951-3.
- [25] Fan SX, Tang W. Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sens Actuators B: Chem. 2022;362:131789. doi: 10.1016/j.snb.2022.131789.
- [26] Xia X. Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning. Express Polym Lett. 2011;6:169–76. doi: 10.3144/expresspolymlett.2012.18.
- [27] Tang W, Li WD, Du XJ, Yu J,Sun QQ. 1D N-type SnO2 nanofibers coexisted with P-type Co3O4 cubes for highly selective acetone sensor. IOP Conf Ser: Mater Sci Eng. 2019;479:012116. doi: 10.1088/1757-899X/479/1/012116.
- [28] Lai X, Li J, Korgel BA, Dong Z, Li Z, Su F, et al. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew Chem Int Ed. 2011;50:2738–41. doi: 10.1002/anie.201004900.
- [29] Kim H, An S, Jin C, Lee C. Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts. Curr Appl Phys. 2012;12:1125–30. doi: 10.1016/j.cap.2012.02.006.
- [30] Cheng Z, Song L, Ren X, Zheng Q, Xu J. Novel lotus root slice-like self-assembled In2O3 microspheres: synthesis and NO2-sensing properties. Sens Actuators B: Chem. 2013;176:258–63. doi: 10.1016/j.snb.2012.09.048.
- [31] Wang S, Cao J, Cui W, Fan L, Li X, Li D. Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sens Actuators B: Chem. 2018;255:159–65. doi: 10.1016/j.snb.2017.08.054.
- [32] Park S, Kim S, Sun G-J, Lee C. Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles. ACS Appl Mater Interfaces. 2015;7: 8138–46. doi: 10.1021/acsami.5b00972.
- [33] Li Y, Wang S, Hao P, Tian J, Cui H, Wang X. Soft-templated formation of double-shelled ZnO hollow microspheres for acetone gas sensing at low concentration/near room temperature. Sens Actuators B: Chem. 2018;273:751–9.
- [34] Liang Q, Zou X, Chen H, Meihong F, Li G-D. High-performance formaldehyde sensing realized by alkaline-earth metals doped In2O3 nanotubes with optimized surface properties. Sens Actuators B: Chem. 2019;304:127241. doi: 10.1016/j.snb.2019.127241.
- [35] Yu XX, Liu XS, Wu MZ, Sun ZQ, Li G, Chen XS. Hierarchical radial Co3O4 microcrystal and application in gas sensor. Chin J Chem Phys. 2014;27:99–102. doi: 10.1063/1674-0068/27/01/99-102.
- [36] Pan Z, Qian L, Shen J, Huang J, Guo Y, Zhang Z. Construction and application of Z-scheme heterojunction In2O3/Bi4O7 with effective removal of antibiotic under visible light. Chem Eng J. 2021;426:130385. doi: 10.1016/j.cej.2021.130385.
- [37] Vladimirova SA, Rumyantseva MN, Filatova DG, Chizhov SA, Khmelevsky NO, Konstantinova EA, et al. Cobalt location in p-CoOx/n-SnO2 nanocomposites: correlation with gas sensor performances. J Alloys Compd. 2017;721:249–60. doi:10.1016/j.jallcom.2017.05.332.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fd9f367-b0a0-4c77-9df4-e104b17c043f