PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction and optimization of tower mill grinding power consumption based on GA-BP neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grinding is commonly responsible for the liberation of valuable minerals from host rocks but can entail high costs in terms of energy and medium consumption, but a tower mill is a unique power-saving grinding machine over traditional mills. In a tower mill, many operating parameters affect the grinding performance, such as the amount of slurry with a known solid concentration, screw mixer speed, medium filling rate, material-ball ratio, and medium properties. Thus, 25 groups of grinding tests were conducted to establish the relationship between the grinding power consumption and operating parameters. The prediction model was established based on the backpropagation “BP” neural network, further optimized by the genetic algorithm GA to ensure the accuracy of the model, and verified. The test results show that the relative error of the predicted and actual values of the backpropagation “BP” neural network prediction model within 3% was reduced to within 2% by conducting the generic algorithm backpropagation “GA-BP” neural network. The optimum grinding power consumption of 41.069 kWh/t was obtained at the predicted operating parameters of 66.49% grinding concentration, 301.86 r/min screw speed, 20.47% medium filling rate, 96.61% medium ratio, and 0.1394 material-ball ratio. The verifying laboratory test at the optimum conditions, produced a grinding power consumption of 41.85 kWh/t with a relative error of 1.87%, showing the feasibility of using the genetic algorithm and BP neural network to optimize the grinding power consumption of the tower mill.
Rocznik
Strony
art. no. 172096
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mining Engineering, University of Science and Technology Liaoning, Anshan 114051, China
autor
  • School of Mining Engineering, University of Science and Technology Liaoning, Anshan 114051, China
autor
  • School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255049, China
  • Minerals Technology Department, Central Metallurgical R&D Institute, Helwan, Cairo, 11421, Egypt
Bibliografia
  • AUSTIN, L. G., C. L. SCHNEIDER.2022. A Kinetic Model for Size Reduction in a Pilot Scale Tower Mill: Model Verification. Minerals12(6), 679.
  • DANIELLE, C. R., S. ERIK, PATRICK, M. HUGH.2017. Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics. International Scholarly and Scientific Research & Innovation11(11), 1740-1744.
  • DE BAKKER, J. 2013. Energy Use of Fine Grinding in Mineral Processing. Metallurgical and Materials Transactions E1(1), 8-19.
  • DE CARVALHO, R. M., L. M. TAVARES.2013. Predicting the effect of operating and design variables on breakage rates using the mechanistic ball mill model. MInerals Engineering43-44, 91-101.
  • FUERSTENAU, D. W., A.-Z. M. ABOUZEID.2002. The energy efficiency of ball milling in comminution.International Journal of Mineral Processing67, 161-185.
  • GUPTA, V. K., S. SHARMA. 2014. Analysis of ball mill grinding operation using mill power specific kinetic parameters.Advanced Powder Technology25(2), 625-634.
  • KUMAR, A., R. SAHU, S. K. TRIPATHY.2023. Energy-Efficient Advanced Ultrafine Grinding of Particles Using Stirred Mills—A Review. Energies16(14), 5277.
  • LI, L., B. WEI, Q. ZHANG, J. ZHANG, X. ZHANG, C. WANG, N. LI, Z. LIU. 2023. Evaluating the performance of an industrial-scale high pressure grinding rolls (HPGR)-tower mill comminution circuit. Minerals Engineering191.
  • LIU, S., Z. LIN, Y. JIANG, T. ZHANG, L. YANG, W. TAN, F. LU.2022. Modelling and discussion on emission reduction transformation path of China's electric power industry under "double carbon" goal.Heliyon8 (9), e10497.
  • SHI, F., AND W. XIE. 2016. A specific energy-based ball mill model: From batch grinding to continuous operation. Minerals Engineering86, 66-74.
  • STIEF, D. E., W. A. LAWRUK, L. J. WILSON. 1987. Tower mill and its application to fine grinding. Minerals and Metallurgical Processing, 45-50.
  • TROMANS, D. 2008. Mineral comminution: Energy efficiency considerations. MInerals Engineering21 (8):613-620.
  • VALERY, W., A. JANKOVIC.2002. The Future of Comminution34th IOC on Mining and Metallurgy, 30 Sept.-3 Oct.2002, Hotel “Jezero”, Bor Lake, Yugoslavia.
  • WARREN LIAO, T., L. J. CHEN.1994. A neural netwark approach for grinding processes: Modeling and optimization.International Journal of Machining Tools Manufacturing34, 919-937.
  • YUAN, Y., Y. ZHANG. 2022. Improvement of the grindability of vanadium-bearing shale and the direct vanadium leaching efficiency of grinded product via microwave pretreatment with particle size classification. Colloids and Surfaces A: Physicochemical and Engineering Aspects647, 128979.
  • ZHENGMING, X., W. XIN, W. XING, W. LONG. 2016. Simulation Analyses and Experimental Investigation on Optimum Matching of Operating Parameters of Tower Mill.China Mechanical Engineering27(4), 483-487.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fcea662-844a-4f87-a95d-4ca4eb50c49d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.