PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simplifying assumptions and the scope of application of lipid membrane models

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biological membranes are components of the cell – the basic unit of life. Their structure originates from amphiphilic properties of lipid molecules ( the major constituent of biological membranes) which when surrounded by water spontaneously form organized structures that include bilayers. A bilayer created purely out of lipid molecules is used as a physical model of biological membranes on which one can study biological processes associated with their lipid phase. These may include: passive transport, formation and decomposition of domains, phase transitions and formation of pores influenced by an external electric field. Experiments on lipid bilayer coupled with studies of its mathematical models enable to gain an understanding of the aforementioned biological membrane phenomena at a molecular level. A mathematical model is characterized by a set of simplifying assumptions which determines its application. By developing a simple model that only takes into account the structure of the hydrophobic lipid molecules, we were able to observe phases of various density corresponding to temperature changes. Expanding the model by including the polar parts of lipid molecules expressed via a surface pressure multiplied by a surface area per one molecule increased its range of research. This assumption, did not allow capturing some of the factors such as ionic strength or a presence of water molecules. Supplementing the model with new assumptions increased its application. The extended model allowed additionally tracking changes in the membrane influenced by biologically active amphiphilic compounds as well as examining the process of electroporation.
Rocznik
Strony
13--16
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Department of Biomedical Engineering and Instrumentation, Wrocław University of Technology, 50-370 Wrocław, Poland
Bibliografia
  • 1. Scott H. L.: Some models for lipid bilayer and biomembrane phase transitions. J. Chem. Phys. 1975, 62.
  • 2. Kubica K., Kuczera J.: The effect of the alkyl chain length of modifier molecules on membrane structure studied by the cellular-automaton method. Appl. Math. Comp 1991, 44.
  • 3. Kuczera J., Janas T., Przestalski S., Witek S., Oświęcimska M.: Effect of surface active anions on the activity of dodecyloxymethylenemethylmorpho-linium chloride as modifier of sulphate ion transport across lecithin liposome membranes. Studia Biophysica 1985, 105.
  • 4. Caille A., Pink D., De Verteuil F., Zuckerman M.: Theoretical models for quasi-two-dimensional mesomorphic monolayers and membrane bilayers. J. Can. J. Phys. 1980, 58.
  • 5. Pink D., Green T., Chapmann D.: Raman Scattering in Bilayers of saturated phosphatidylcholines. Experimental and theory. Biochemistry 1980, 19.
  • 6. Kubica K.: Pink’s model and lipid membranes. Cell. Mol. Biol. Lett. 1997, 2.
  • 7. Mouritsen O.G., Boothroyd A., Harris R., Jan N., Lookman T., MacDonald L., Pink D. A.: Computer simulation of the main gel-fluid phase transition of lipid bilayers. J.Chem. Phys. 1983, 98.
  • 8. Ipsen J., Mouristen O., Bloom M.: Relationships between lipid membrane area, hydrophobic thickness, and acylchain orientational order. Biophys. J. 1990, 57.
  • 9. Jorgensen K., Ipsen J., Mouritsen O. Bennett D. and Zuckermann M.: The effect of density fluctuations on the partitioning of foreign molecules into lipid bilayers: application to anaesthetics and insecticides. Biochi. Biophys. Acta 1991, 1067.
  • 10. Sujak, A., Okulski, W., Gruszecki, W.I.: Organisation of Xanthophyll Pigments Lutein and Zeaxanthin in Lipid Membranes Formed with Dipalmitoylphosphatidylcholine, Biochim. Biophys. Acta 2000, 1509.
  • 11. Hauser H., Pascher I., Sundell S.: Conformation of phospholipids crystal structure of a lysophosphatidylcholine analogue. J. Mol. Biol. 1980, 137.
  • 12. Brockman H.: Dipole potential of lipid membranes. Chem. Phys. Lipids 1994, 73.
  • 13. Kubica K.: Monte Carlo simulation towards ripple phase modeling. Comp. Chem. 2001, 25.
  • 14. Langner M., Pruchnik H., Kubica K.: The effect of the lipid bilayer state on fluorescence intensity of Fluorescein-PE in a saturated lipid bilayer. Z. Naturforsch. 2000, 55c.
  • 15. Kubica K.: Computer simulation studies on significance of lipid polar head orientation. Comp. Chem 2002, 26.
  • 16. Kubica K.: Computer simulation studies on the significance of lipid polar head charge. Cel. Mol. Biol. Lett. 2002, 7.
  • 17. Westman J., Boulanger Y., Ehrenberg A., Smith I. C. P.: Charge and pH dependent drug binding to model membranes. A H-NMR and light absorption study. Biochim. Biophys. Acta 1982, 685.
  • 18. Kubica K., Langner M., Gabrielska J.: The dependence of Fluorescein-PE fluorescence intensity on lipid bilayer state. Evaluating the interaction between the probe and lipid molecules. Cel. Mol. Biol. Lett. 2003, 8.
  • 19. Weaver J. Chizmadzhev Yu. A. Theory of electroporation: A review: Bioelectrochem. Bioenerg. 1996, 41.
  • 20. Kalinowski S., Koronkiewicz S., Kotulska M., Kubica K.: Simulation of electroporated cell by chronopotentiometry. Bioelectrochemistry 2007, 70.
  • 21. Kotulska M., Kubica K.: Structural and energetic model of the mechanisms for reduced self-diffusion in lipid bilayer with increasing ionic strength. Physical Review E 72, 2005.
  • 22. Kubica K.: A pore creation in a triangular network model membrane. Comp. Biol. Chem. 2008, 32.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fcc6c94-56fe-4dd4-9a87-11409f120708
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.