PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Precipitation Processes and Mechanical Properties of Aged Inconel 718 Alloy after Annealing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inconel 718 is a precipitation hardenable nickel-iron based superalloy. It has exceptionally high strength and ductility compared to other metallic materials. This is due to intense precipitation of the γ’ and γ” strengthening phases in the temperature range 650-850°C. The main purpose of the authors was to analyze the aging process in Inconel 718 obtained in accordance with AMS 5596, and its effect on the mechanical properties. Tensile and hardness tests were used to evaluate the mechanical properties, in the initial aging process and after reheating, as a function of temperature and time respectively in the ranges 650°-900°C and 5-480 min. In addition, to link the mechanical properties with the microstructure transmission microscopy observations were carried out in selected specimens. As a result, factors influencing the microstructure changes at various stages of strengthening were observed. The authors found that the γ’’ phase nucleates mostly homogenously in the temperature range 650-750°C, causing the greatest increase in strength. On the other hand, the γ’ and δ phases are formed heterogeneously at 850°C or after longer annealing in 800°C, which may weaken the material.
Słowa kluczowe
Twórcy
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
autor
  • Pratt & Whitney Rzeszów S.A., Hetmańska 120 35-078 Rzeszow, Poland
  • Rzeszów University of Technology, Department of Materials Science, 2 Wincentego Pola Str.35-959 Rzeszow, Poland
  • Pratt & Whitney Rzeszów S.A., Hetmańska 120 35-078 Rzeszow, Poland
autor
  • Pratt & Whitney Rzeszów S.A., Hetmańska 120 35-078 Rzeszow, Poland
Bibliografia
  • [1] Z. S. Yu, J. X. Zhang, Y. Yuan, R. C. Zhou, H. J. Zhang, H. Z. Wang, Mater. Sci. Eng. A 634, 55 (2015).
  • [2] S. Fukuyama, K. Yokogawa, J. Mater. Sci 10, 293 (1994).
  • [3] M. Sundararaman, P. Mukhopadhyay, S. Banerjee, Acta Metall. 36, 847 (1988).
  • [4] L. Xiao, D. L. Chen, M. C. Chaturvedi, Scr. Mater. 52, 603 (2005).
  • [5] N. S. Stoloff, C. T. Sims, W. C. Hagel, The Superalloys II (John Wiley & Sons, New York, 1987).
  • [6] S. Azadian, L.-Y. Wei, R. Warren, Mater. Charact. 53, 7 (2004).
  • [7] M. Sundararaman P. Mukhopadhyay, High Temp. Mater. Process. 11, 351 (1993).
  • [8] A. Thomas, M. El-Wahabi, J.M. Cabrera, J.M. Prado, J. Mater. Process. Technol. 177, 469 (2006).
  • [9] J. W. Brooks, P. J. Bridges, Superalloys 1988 Symp, 33 (1988).
  • [10] M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Superalloys 718, 625, 706 Var. Deriv. 419 (1994).
  • [11] I. Kirman, D. H. Warrington, Metall. Trans. 1, 2667 (1970).
  • [12] D. A. Pineau, Metal. Mater. Trans. 4, (1973).
  • [13] J. M. Oblak, D. F. Paulonis, D. S. Duvall, Metall. Trans. 5, 143 (1974).
  • [14] A. K. Roy, A. Venkatesh, J. Alloys Compd. 496, 393 (2010).
  • [15] H. Y. Zhang, S. H. Zhang, M. Cheng, Z. X. Li, Mater. Charact. 61, 49 (2010).
  • [16] X. Wei, W. Zheng, Z. Song, T. Lei, Q. Yong, Q. Xie, J. Iron Steel Res. Int. 21, 375 (2014).
  • [17] J. Krawczyk, A. Łukaszek-Sołek, T. Śleboda, P. Bała, S. Bednarek, M. Wojtaszek, Arch. Metall. Mater. 57, 593 (2012).
  • [18] B. Geddes, H. Leon, X. Huang, in (2010), pp. 25-46.
  • [19] W. T. Loomis, J. W. Freeman, D. L. Sponseller, Metall. Trans. 3, 989 (1972).
  • [20] H. Jiahong, X. Y. Tang, S. Fukuyama, K. Yokogawa, 43, 4403 (1995).
  • [21] C. Slama, M. Abdellaoui, J. Alloys Compd. 306, 277 (2000).
  • [22] E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, T. Kurzynowski, Mater. Sci. Eng. A 639, 647 (2015).
  • [23] Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, H. Li, J. Alloys Compd. 649, 949 (2015).
  • [24] C. Slama, C. Servant, G. Cizeron, J. Mater. Res. 12, 2298 (1997).
  • [25] D. Zhang, W. Niu, X. Cao, Z. Liu, Mater. Sci. Eng. A 644, 32 (2015).
  • [26] S.-H. Zhang, H.-Y. Zhang, M. Cheng, Mater. Sci. Eng. A 528, 6253 (2011).
  • [27] J. Michalski, T. O. Wejrzanowski, R. Pielaszek, K. A. Konopka, W. Lojkowski, K. J. Kurzydlowski, Mater. Sci. 23, 79 (2005).
  • [28] D. Keiser, H. Brown, Review of the Physical Metalurgy of Alloy 718 (AERO JET NUCLEAR COMPANY, 1976).
  • [29] M. Sundararaman, R. Kishore, P. Mukhopadhyay, Metall. Mater. Trans. A 25, 653 (1994).
  • [30] L. M. Camus, G. Engberg, High Temp. Mater. Process. 9, 27 (1990).
  • [31] P. Zhang, S. X. Li, Z. F. Zhang, Mater. Sci. Eng. A 529, 62 (2011).
  • [32] F. R. N. Nabarro, Metall. Mater. Trans. A 27, 513 (1996).
  • [33] T. Alam, M. Chaturvedi, S. P. Ringer, J. M. Cairney, Mater. Sci. Eng. A 527, 7770 (2010).
  • [34] C. Slama, G. Cizeron, J. Phys. III 7, 665 (1997).
  • [35] N. Zhou, D. C. Lv, H. L. Zhang, D. McAllister, F. Zhang, M. J. Mills, Y. Wang, Acta Mater. 65, 270 (2013).
  • [36] X. Wei, W. Zheng, Z. Song, T. Lei, Q. Yong, Q. Xie, J. Iron Steel Res. Int. 20, 88 (2013).
Uwagi
EN
1. Financial support of the National Center for Research and Development in the program INNOLOT CASELOT INNOLOT/I/9/NCBR/2013 is gratefully acknowledged.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fc656d1-dea4-4bb7-95e6-e34923d3e151
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.