PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Biostimulants on the Content and Uptake of Selected Macronutrients in Jerusalem Artichoke Tubers (Helianthus tuberosus L.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the effect of biostimulants on the content and uptake of selected macronutrients (phosphorus, calcium, magnesium and potassium) in tubers of two varieties of Jerusalem artichoke. The experiment was conducted in a two-factor arrangement (split-plot) with three replications in 2021–2022 at an individual farm in Międzyrzec Podlaski, Poland. The effect of two factors was studied. The first-order factor was two varieties of Helianthus tuberosus: ‘Albik’ and ‘Rubik’, and the second-order variants of biostimulant application: Kaishi, Maral, Nutrigreen AD, and Vanadoo. The effectiveness of the application of individual biostimulants in the cultivation of two varieties of Jerusalem artichoke was compared with the control object (without the application of biostimulants). The variety ‘Rubik’ accumulated the most phosphorus, calcium and potassium and the variety ‘Albik’ accumulated magnesium. Biostimulants increased the concentration of phosphorus, magnesium and calcium, and decreased potassium compared to topinambur tubers harvested from the control object. Macronutrient content in tubers of the tested varieties. Helianthus tuberosus can be ranked in descending order: potassium > phosphorus > calcium > magnesium. The cultivar ‘Albik’ was characterized by the highest macro nutrient uptake capacity. The application of biostimulants increased the uptake of phosphorus, magnesium, calcium and potassium compared to the control. The content and uptake of phosphorus, calcium, magnesium and potassium were influenced by climatic conditions.
Słowa kluczowe
Rocznik
Strony
190--202
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Dieteties, John Paul II University in Biała Podlaska, ul. Sidorska 95/97, 21-500 Biala Podlaska, Poland
  • Regional Research Centre on Environment, Agriculture and Innovative Technologies EKO-AGRO-TECH, John Paul II University in Biała Podlaska, ul. Sidorska 95/97, 21-500 Biała Podlaska, Poland
Bibliografia
  • 1. Askari-Khorasgani O., Hatterman-Valenti H., Pardo, F.B.F., Pessarakli M. 2019. Plant and symbiont metabolic regulation and biostimulants application improve symbiotic performance and cold acclimation. J. Plant Nutr. 42, 2151–2163.
  • 2. Boroń F. 2021. Wymagania biotopowe w rozmnażaniu wegetatywnym topinamburu (Helianthus tuberosus L.) w warunkach uprawy wazonowej. Acta Juvenum, 6, 21–27.
  • 3. Bulgari R., Cocetta G., Trivellini A., Vernieri P., Ferrante A. 2014. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 31, 1–17. doi: 10.1080/01448765.2014.964649.
  • 4. Danilčenko H., Jariene E., Gajewski M., Sawicka B., Kulaitien J., Cerniauskiene J., Aleknaviciene P. 2013. Changes in amino acids content in tubers of Jerusalem artichoke (Helianthus tuberosus L.) Cultivars during storage. Acta Scientiarum Polonorum Hortorum Cultus, 12(2), 97-105.
  • 5. De Vries F.T., Griffiths R.I., Knight C.G., Nicolitch O. 2020. Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 368, 270–274.
  • 6. Del Buono D. 2021. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total. Environ. 751, 141763. doi: 10.1016/j.scitotenv.2020.141763.
  • 7. Drobek M., Frąc M., Cybulska J. 2019. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – a review. Agronomy, 9, 335.
  • 8. Fiorentino N., Ventorino V., Woo S.L Pepe O., De Rosa A., Gioia L., Romano I., Lombardi N. Napolitano M., Colla G., 2018. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 9, 743.
  • 9. Fotyma M. 2011. Soil test for available potassium, Nawozy i Nawożenie, 44, 6–16.
  • 10. Gao K., Zhu T., Han G. 2011. Water and nitrogen interactively increased the biomass production of jerusalem artichoke (Helianthus tuberosus L.) in semi arid area, African Journal of Biotechnology, 10, 34, 6466-6472.
  • 11. Grzebisz W., Szczepaniak W. 2003. Systemy nawożenia, Journal of Elementology, 8(3), 95–107.
  • 12. Halpern M., Bar-Tal A., Ofek M., Minz D., Muller T., Yermiyahu U. 2015. The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 130, 141–174. doi: 10.1016/bs.agron.2014.10.001
  • 13. Harmankaya M., Al Juhaimi F., Özcan M.M. 2012. Mineral contents of jerusalem artichoke (Helianthus tuberosus L.) growing wild in Turkey. Anal Lett, 45(15), 2269–2275. https://doi.org/10.1080/00032719.2012.686131
  • 14. LST EN 15510. 2017. Feed: sampling and analysis methods – determination of calcium, sodium, phosphorus, magnesium, potassium, iron, zinc, copper, manganese, cobalt, molybdenum and lead using ICP-AES; Polish Committee for Standardization (PCS): Warsaw, Poland, 31.
  • 15. Massa D., Lenzi A., Montoneri E., Ginepro M., Prisa D., Burchi G. 2017. Plant response to biowaste soluble hydrolysates in hibiscus grown under limiting nutrient availability. J. Plant Nutr., 41, 396–409.
  • 16. Sawicka B., Danilˇcenko H., Jariene E., Skiba D., Rachon L., Barbas P., Pszczółkowski P. 2021. Nutritional value of jerusalem artichoke tubers (Helianthus tuberosus L.) grown in organic system under Lithuanian and Polish conditions. Agriculture, 11, 440.
  • 17. Sawicka B., Kalembasa S. 2013. Fluctuation of protein nitrogen level in tubers of Helianthus tuberosus L. caused by varying levels of nitrogen fertilisation. Ecol. Chem. Eng., A 20, 213–223.
  • 18. Shahrajabian M.H., Chaski C., Polyzos N., Petropoulos S.A. 2021. Biostimulants application: A Low input cropping management tool for sustainable farming of vegetables. Biomolecules., 7, 11(5), 698. https://doi.org/10.3390/biom11050698.
  • 19. Skowera B. 2014. Changes in hydrothermal conditions in the area of Poland (1971-2010). Fragm. Agron., 31, 74–87.
  • 20. Kays S.J., Nottingham S.F. 2007. Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L., CRC Press.
  • 21. Rouphael Y., Colla G. 2020. Editorial: Biostimulants in Agriculture. Front. Plant Sci., 11, 40.
  • 22. Rodrigues M.A., Sousa L., Cabanas J.E., Arrobas M. 2007. Tuber yield and leaf mineral composition of jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices, Spanish Journal of Agricultural Research, 5(4), 545-553.
  • 23. Terzic S., Zoric M., Atlagic J., Maksimovic I., Zeremski T., Dedic B., 2011. Classification of jerusalem artichoke accessions by linear discriminant analysis of mineral concentration in tubers and leaves, Helia, 34(55), 83-90. https://doi.org/10.2298/HEL1155083T.
  • 24. Trętowski J., Wojcik R. 1991. Methodology of Agricultural Experiments. Higher School of Agriculture and Pedagogy in Siedlce, Poland, 500.
  • 25. Van Loo J., Coussement P., De Leenheer L., Hoebregs H., Smits G. 1995. On the presence of inulin and oligofructose as natural ingredients in the western diet. Critical Reviews in Food Science & Nutrition, 35(6), 525-52.
  • 26. Whitney E.N., Rolfes S.R. 1999. Understanding nutrition, 40.
  • 27. USDA. United States Department of Agriculture Agricultural Research Service Food Composition Databases 2018. https://ndb.nal.usda.gov/ndb/ (access 14.09.2023)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fc2a75f-c263-4b98-9929-e1f1cd7d8406
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.