PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Funkcjonalizowane klatkowe silseskwioksany : wybrane strategie syntezy i właściwości koordynacyjne na przykładzie metali 13 grupy

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Functionalized cage-like silsesquioxanes : selected synthetic strategies and coordination properties based on group 13 metals
Języki publikacji
PL
Abstrakty
EN
Completely condensed POSS compounds have a cage structure built of Si-O bonds, which makes their electronic properties similar to those of silica and silicates. Moreover, due to their relatively inelastic structure, they impose a coordination geometry on the metal atom, imitating the geometry imposed by silica. Due to the above-mentioned properties, homogeneous models based on silsesquioxanes may not only allow for a better understanding of the nature of heterogeneous catalysts at the molecular level, but also may act as valuable catalysts themselves. Many coordination compounds of main group metals, transition metals and lanthanides have already been obtained. From among the group 13 metals of which this work is concerned, coordination entities of boron, aluminum, gallium, thallium, and indium have been prepared and analyzed so far. They turned out to be suitable models for heterogeneous catalysts, in some cases showing catalytic properties themselves.
Rocznik
Strony
293--318
Opis fizyczny
Bibliogr. 40 poz., schem.
Twórcy
  • Wydział Chemii Uniwersytetu Wrocławskiego, Zespół Chemii Biomateriałów, ul. F. Joliot-Curie 14, 50-383 Wrocław
  • Wydział Chemii Uniwersytetu Wrocławskiego, Zespół Chemii Biomateriałów, ul. F. Joliot-Curie 14, 50-383 Wrocław
  • Wydział Chemii Uniwersytetu Wrocławskiego, Zespół Chemii Biomateriałów, ul. F. Joliot-Curie 14, 50-383 Wrocław
autor
  • Wydział Chemii Uniwersytetu Wrocławskiego, Zespół Chemii Biomateriałów, ul. F. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
  • [1] M.G. Voronkov, V.I. Lavrent'yev, Top. Cur. Chem., 1982, 102, 199.
  • [2] F.J. Feher, D.A. Newman, J.F. Walzer, J. Am. Chem. Soc., 1989, 111, 1741.
  • [3] Z. Li, J. Kong, F. Wang, C. He, J. Mater. Chem. C., 2017, 5, 5283.
  • [4] Ł. John, Mater. Sei. Eng. C, 2018, 88, 172.
  • [5] S. Chanmungkalakul, V. Ervithayasuporn, P. Boonkitti, A. Phuekphong, N. Prigyai, S. Kladsomboon, S. Kiatkamjornwong, Chem. Sci., 2018, 9, 7753.
  • [6] B. Handke, N. Gębicka, A. S. Komolov, Appl. Surf. Sci., 2019, 478, 636.
  • [7] F.J. Feher, R. Terroba, J.W. Ziller, Chem. Comm., 1999, 21, 2153.
  • [8] M. Janeta, T. Lis, S. Szafert, Chem. -Eur. J., 2020, 26, 13686.
  • [9] K. Piec, S. Kostera, D. Jędrzkiewicz, J. Ejfler, Ł. John, New J. Chem., 2020, 44, 10786.
  • [10] D.B. Cordes, P.D. Lickiss, R. Franck, Chem. Rev., 2010, 10, 2081.
  • [11] M. Ye, Y. Wu, W. Zhang, R. Yang, Res. Chem. Intermed., 2018, 44, 4277.
  • [12] C. Copéret, M. Chabanas, R.P. Saint-Arroman, J.M. Basset, Angew. Chem. Int. Ed., 2003, 42, 156.
  • [13] R. Duchateau, Chem. Rev., 2002, 102, 3525.
  • [14] C.A. Müller, M. Maciejewski, T. Mallat, A. Baiker, J. Catal., 1999,184, 280.
  • [15] J.M. Fraile, J.I. Garcia, J.A. Mayoral, E. Vispe, J. Catal., 2001, 204, 146.
  • [16] F. Feher, T.A. Budzichowski, Polyhedron, 1995, 14, 3239.
  • [17] C. Di Iulio, M.D. Jones, M.F. Mahon, J. Organomet. Chem., 2012, 718, 96.
  • [18] C. Di Iulio, M.D. Jones, M.F. Mahon, D.C. Apperley, Inorg. Chem., 2010, 49, 10232.
  • [19] R. Murugavel, A. Voigt, M.G. Walawalkar, H.W. Roesky, Chem. Rev., 1996, 96, 2205.
  • [20] P.G. Harrison, J. Organomet. Chem., 1997, 542, 141.
  • [21] F.J. Feher, T.A. Budzichowski, J.W. Ziller, Inorg. Chem., 1992, 31, 5100.
  • [22] F.T. Edelmann, Y.K. Gun’ko, S. Giessman, F. Olbrich, Inorg. Chem., 1999, 38, 210.
  • [23] F.J. Feher, T.A. Budzichowski, J.W. Ziller, Inorg. Chem., 1997, 36, 4082.
  • [24] F.J. Feher, K. Rahimian, T.A. Budzichowski, J. W. Ziller, Organometallics, 1995, 14, 3920.
  • [25] V. Lorenz, A. Fisher, K. Jacob, F.T. Edelmann, Inorg. Chem. Commun., 2003, 6, 795.
  • [26] G. Li, L. Wang, H. Ni, C.U.J. Pittman, J. Inorg. Organomet. Polym., 2002, 11, 123.
  • [27] D.W. Scott, J. Am. Chem. Soc., 1946, 68, 356.
  • [28] P. Rościszewski, R. Kazimierczuk, J. Sołtysiak, Polimery, 2006, 1, 3.
  • [29] E. Leśniak, Polimery, 2001, 46, 516.
  • [30] M.G. Voronkov, V. I. Lavrent'yev, Top. Cur. Chem., 1982, 102, 199.
  • [31] D.B. Cordess, P.D. Lickiss, F. Rataboul, Chem. Rev., 2010, 110, 2081.
  • [32] J. Wu, P.T. Mather, Polym. Rev., 2009, 49, 25.
  • [33] B. Marciniec, M. Dutkiewicz, H. Maciejewski, Synthesis, 2009, 12, 2019.
  • [34] P.D. Lickiss, F. Ratabont, Adv. Organometal. Chem., 2008, 57, 1.
  • [35] S. Chimjarn, R. Kunthom, P. Chanchaorone, R. Sodkhomkhum, P. Sangtrirutnugul, V. Ervithayasuporn, Dalton Trans., 2015, 44, 916.
  • [36] K. Grela, Olefin Metathesis, Theory and Practice, Wiley, 2014.
  • [37] B. Marciniec, Appl. Organomet. Chem., 2000, 14, 527.
  • [38] F.T. Edelmann, Silicon Chem., 2003, 29, 383.
  • [39] A. Voigt, M.G. Walawalkar, R. Murugavel, H.W. Roesky, E. Parisini, P. Lubini, Angew. Chem. Int. Ed., 1997, 36, 2203.
  • [40] F.T. Edelmann, S. Gießmann, A. Fischer, J. Organomet. Chem., 2001, 620, 80.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fbc6259-b360-4d95-9295-07f964e69a5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.