Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the basis of many advanced industrial technologies there are such thermodynamic processes occurring on the surface of gas-particle bubbles as absorption [16], aeration [13], bubbling [9], vacuum distillation [5], degassing [3], boiling [18], cavitation [12], the production of heat-insulating materials by the method of blowing [19], gas hydrating [11], and many others. Active studies of the bubbles effect on sound vibrations were carried out to optimize the sonar operation. Existing literature [1, 4] highlights the issue of the damped oscillations at frequencies from 4 kHz to 150 kHz in seawater at different depths. Another direction of research was caused by the need for the use of cavitation [14]. The study of fluid degasification by cavitation method was carried out at frequency from 10 kHz to 1 MHz. In most cases, bubbles oscillation is damping. However, definitely during these oscillations, the most intense heat and mass exchange processes on the bubbles surface are observed. In the course of oscillation, there is a very rapid change in the thermodynamic parameters of the system "gas bubble-liquid". The urgency of the study of heat and mass transfer processes dynamics on the oscillating gas bubble surface is due to the need to optimize various technological processes.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
52--60
Opis fizyczny
Bibliogr. 20 poz., rys., wykr., wzory
Twórcy
autor
- Kielce University of Technology, Poland
autor
- Poltava National Technical University, Ukraine
autor
- Poltava National Technical University, Ukraine
Bibliografia
- [1] Bulanov V. A., Korskov I. V., Popov P. N., Storozhenko A. V. (2016), Issledovaniya rasseyaniya i zatukhannya zvuka, akusticheskoy nelineynosti i kavitatsionnoy prochnosti morskoy vody v pri poverkhnostnom sloe morya [Research of sound scattering and damping, acoustic nonlinearity and cavitation strength of sea water in the sea surface layer]. Underwater Research and Robotics, vol. 2, No 22, pp. 56-66 (in Russian).
- [2] Veretelnik T. I., Difuchin Yu. N. (2008), Matematicheskoe modelirovanie kavitatsionnogo potoka zhidkosti v khimiko-tekhnologicheskoy sisteme [Mathematical modeling of the fluid cavitation flow in the chemical-technological system]. Vіsnik ChDTU, No3, pp. 82-85 (in Russian).
- [3] Zhezhera N. I. (2012), Razmery i dvizhenie puzyrkov gaza pri degazatsii nefti v akusticheskom deaeratore [Dimensions and movement of gas bubbles during degassing of oil in acoustic deaerator]. Almanac of modern science and education, No 8, pp. 50-53 (in Russian).
- [4] Kobelev Yu. A. (2011), K teorii mnogokratnogo rasseyaniya zvukovykh voln na sfericheskikh chastitsakh v zhidkikh i uprugikh sredakh [To the theory of multiple scattering of sound waves on spherical particles in liquid and elastic media]. Akust. Zhurnal, vol. 57, No 4, pp. 443-449 (in Russian).
- [5] Konovalov M. L., Rozanov O. V. (2011), Effektivnost vakuumnoy distillyatsii v toke vodyanogo para [The Efficiency of Vacuum Distillation in the Current of Water Vapor]. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva, No 1(34), pp. 39-41 (in Russian).
- [6] Koryagin S. V., Yakovlev A. A. (2016), Sravnitelnyy analiz metodov integrirovaniya s plavayushchim shagom [Comparative analysis of integration methods with floating step]. Moskow: Moskovskiy tekhnologicheskiy universitet MIREA, v. 3, No 1, pp. 95-103 (in Russian).
- [7] Kulinchenko V. R., Zavjalov V. L., Mysjura T. Gh. (2007), Peredumovy stvorennja matematychnoji modeli - osnovni polozhennja i rivnjannja rukhu Releja [Prerequisites for the creation of the mathematical model - the basic positions and equations of the Rayleigh motion]. Naukovi praci Nacionaljnogho universytetu kharchovykh tekhnologhij, No 22, pp. 36-41 (in Ukrainian).
- [8] Кулинченко В. Р. (2012), Osnovy matematicheskogo modelirovaniya dinamiki rosta parovoy fazy [Fundamentals of mathematical modeling of the dynamics of the growth of the vapor phase [National University of Food Technologies]. Available at: http://dspace.nuft.edu.ua/jspui/handle/123456789/2224.
- [9] Kushnir S. V., Kost M. V., Kozak R. P. (2016), Barbotazhni khimichni efekty: yikh vydy, mekhanizmy vynyknennia ta heokhimichni proiavy [Bubbling chemical effects: their types, mechanisms of occurrence and geochemical manifestations]. Voda i vodoochysni tekhnolohii. Naukovo-tekhnichni visti, No 3(20), pp. 30-47 (in Ukrainian).
- [10] Rudenko M. G., Molokova S. V. (2007), Spektry akusticheskogo izlucheniya, soprovozhdayushchego intensivnyy nagrev zhidkosti [Spectra of acoustic radiation accompanying intensive heating of liquid]. Vestnik IrGTU, No2 (30), рр. 84-87 (in Russian).
- [11] Semenov M. Ye., Shits Yu. (2013), Sintez gidratov gazov v laboratornykh usloviyakh [Synthesis of hydrate gases in laboratory conditions]. Tekhnicheskie nauki - ot teorii k praktike: sb. st. po mater. XVII mezhdunar. nauch.-prakt. konf, part II, pp. 55-61 (in Russian).
- [12] Sribniuk S .M., Zubricheva L. L., Medvedovskyi V. V. (2011), Analiz umov vynyknennia kavitatsiinoi erozji [Analysis of the conditions for cavitation erosion]. Zbirnyk naukovykh prats (haluzeve mashynobuduvannia, budivnytstvo) PoltNTU, No 2 (30), pp. 219-226 (in Ukrainian).
- [13] Tolstoy M. Yu., Shishelova T. I., Shestov R. A. (2015), Issledovaniya rastvorimosti kisloroda [Investigations of Oxygen Solubility]. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya, vol.1, No 12, pp. 86-90 (in Russian).
- [14] Khmelev V. N., Shalunov A. V., Golykh R. N., Shalunova A.V. (2011), Vyyavlenie optimalnykh rezhimov i usloviy ultrazvukovogo vozdeystviya dlya raspyleniya vyazkikh zhidkostey [Identification of optimal regimes and conditions of ultrasonic action for spraying viscous liquids]. Biyskiy tekhnologicheskiy institut , No 10, pp. 105-110 (in Russian).
- [15] Shagapov V. Sh., Koledin V. V. (2013), K teorii rosta parovykh puzyrkov v metastabilnoy zhidkosti [On the theory of vapor bubbles growth in metastable fluid]. Institut mekhaniki Ufimskogo nauchnogo tsentra RAN, No 4 (51), pp. 543-551 (in Russian).
- [16] Shilyaev M. I., Tolstykh A. V. (2013), Modelirovanie protsessov absorbtsii gazov v barbotazhnykh apparatakh [Simulation of processes for the absorption of gases in bubble devices]. Teplofizika i aeromekhanika, No 5 (20), pp. 575-586 (in Russian).
- [17] Butcher J. C. (2008), Numerical Methods for Ordinary Differential Equations, New York: John Wiley & Sons, pp. 482.
- [18] Medvedev R. N., Chernov A. A. (2012), The calculation of thermal growth of a toroidal bubble on a current concentrator in electrolyte, Dnepropetrovsk: SPIC Triacon, iss. No2 (10), pp. 50-56.
- [19] Pavlenko A., Koshlak H. (2014), Basic principles of gas hydrate technologies. Metallurgical and Mining Industry, No 3, pp. 60-65.
- [20] Pavlenko A., Kutnyi B., Holik Yu. (2017), Study of thermobaric conditions effect on the propane hydrate formation process. Eastern European Journal of Enterprise Technologies, vol. 5, No 89, рр. 43-50.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fbb5e37-34ff-4b88-a6bf-72d63d36d6fa