PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tag and correct: high precision post-editing approach to speech recognition errors correction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
EN
Abstrakty
EN
This paper presents a new approach to the problem of correcting speech recognition errors by means of post-editing. It consists of using a neural sequence tagger that learns how to correct the ASR (Automatic Speech Recognition) hypothesis word by word and a corrector module that applies corrections returned by the tagger.The proposed solution is applicable to any ASR system, regardless of its architecture, and provides high-precision control over errors being corrected. This is especially crucial in production environments, where avoiding the introduction of new mistakes by the error correction model may be more important than the net gain in overall results. The results show that the performance of the proposed error correction models is comparable with previous approaches, while requiring much smaller resources to train, which makes it suitable for industrial applications, where both inference latency and training times are critical factors that limit the use of other techniques.
Słowa kluczowe
Rocznik
Tom
Strony
939--942
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fb7bfd3-4196-4532-b280-90f22075ef3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.