PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drilling mud influence on sandstone poroelastic parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Perhaps the most critical challenge faced during drilling operations is related to the stability of the well. Additionally, drilling mud plays a crucial role in wellbore stability, as one of its main uses is to support the wellbore wall during the drilling operation. However, ignorance of the effects of drilling mud on the mechanical properties of rock formation can also lead to well failure. The stability of the wellbore is also influenced by pore pressure during the drilling process. The analysis of changes in rock poroelastic parameters after drilling mud saturation was found to be useful regarding the abovementioned issues. Therefore, the measurement of the dynamic Young’s modulus, Poisson’s ratio and Biot’s coefficient of sandstone samples was carried out to determine their trends of variations with confining pressure in different conditions such as dry, water and drilling mud filtrate saturation. The findings indicate that both the dynamic Young’s modulus and the Poisson’s ratio of the sandstone rock increased after saturation with water and drilling mud filtrate, while the Biot’s coefficient was reduced. Furthermore, the velocity of the P wave, the dynamic Young’s modulus and the dynamic Poisson’s ratio of the sandstone rock were proportional to the confining pressure, while the Biot’s coefficient were inversely proportional to the confining pressure. The results imply that effective stress calculation can be influenced by changes in poroelastic parameters established from geophysical measurements, and risk management of wellbore stability stability was increased.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
Bibliografia
  • [1] Suarez-Rivera R., Deenadayalu C., Chertov M., Hartanto R.N., Gathogo P., Kunjir R.: Improving Horizontal Completions on Heterogeneous Tight-Shales. Journal of Petroleum Technology, vol. 64, 2012, pp. 126–130. https://doi.org/10.2118/1012-0126-JPT.
  • [2] Knez D., Wiśniowski R., Owusu W.A.: Turning Filling Material into Proppant for Coalbed Methane in Poland – Crush Test Results. Energies, vol. 12, 2019, 1820. https://doi.org/10.3390/en12091820.
  • [3] Knez D., Calicki A.: Looking for a New Source of Natural Proppants in Poland. Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 66, no. 1, 2018, pp. 3–8. https://doi.org/10.24425/119052.
  • [4] Mukerji T., Dutta N., Prasad M., Dvorkin J.: Seismic Detection and Estimation of Overpressures. Part I: The rock physics basis: CSEG Recorder, vol. 27, no. 7, 2002, pp. 34–57.
  • [5] Kim K., Vilarrasa V., Makhnenko R.Y.: CO2 Injection Effect on Geomechanical and Flow Properties of Calcite-Rich Reservoirs. Fluids, vol. 3, no. 3, 2018, 66. https://doi.org/10.3390/fluids3030066.
  • [6] Biot M.A.: General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, vol. 12, 1941, pp. 155–164. https://doi.org/10.1063/1.1712886.
  • [7] Cheng A.-D.: Material Coefficients of Anisotropic Poroelasticity. International Journal of Rock Mechanics and Mining Sciences, vol. 34, 1997, pp. 199–205. https://doi.org/10.1016/s0148-9062(96)00055-1.
  • [8] Wang H.F.: Quasi-Static Poroelastic Parameters in Rock and Their Geophysical Applications. In: R.C. Liebermann, C.H. Sondergeld (eds.), Experimental Techniques in Mineral and Rock Physics, Pageoph Topical Volumes, Birkhäuser, Basel, pp. 269–286. https://doi.org/10.1007/978-3-0348-5108-4_5.
  • [9] Luo X., Were P., Liu J., Hou Z.: Estimation of Biot’s Effective Stress Coefficient from Well Logs. Environmental Earth Sciences, vol. 73, 2015, pp. 7019–7028. https://doi.org/10.1007/s12665-015-4219-8.
  • [10] Sloan J.P., Brooks J.P., Dear III S.F.: A New, Nondamaging, Acid-Soluble Weighting Material. Journal of Petroleum Technology, vol. 27, 1975, pp. 15–20.
  • [11] Rajaoalison H., Knez D.: Current Trends in Land Subsidence of the North-Central Part of Poland Using DInSAR Technique. E3S Web Conferences, vol. 266, 2021, 03006. https://doi.org/10.1051/e3sconf/202126603006.
  • [12] Vryzas Z., Matenoglou G., Kelessidis V.C.: Assessment of Formation Damage Potential of Novel Drilling Fluids via Integration of Fluid Loss Data with Filter Cake Quality and Filtrate Core Penetration Depth from NMR and MRI. Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2017, SPE-188544-MS, Society of Petroleum Engineers, 2017. https://doi.org/10.2118/188544-MS.
  • [13] Ide J.M.: The Elastic Properties of Rocks: A Correlation of Theory and Experiment. Proceedings of the National Academy of Sciences of the United States of America, vol. 22, no. 8, 1936, pp. 482–496. https://doi.org/10.1073/pnas.22.8.482.
  • [14] Tuman V.S., Alm R.F.: Dynamic and Static Elastic Properties. SPE-603-MS, Society of Petroleum Engineers, 1963.
  • [15] King M.S.: Static and Dynamic Elastic Moduli of Rocks under Pressure. Paper presented at the 11th U.S. Symposium on Rock Mechanics (USRMS), Berkeley, California, June 1969, ARMA-69-0329, American Rock Mechanics Association, 1969.
  • [16] Al-Shayea N.A., Khan K.: Dynamic and Static Moduli of Limestone Rock from Saudi Arabia. In: W. Sijing, F. Bingjun, L. Zhongkui (eds.), Frontiers of Rock Mechanics and Sustainable Development in the 21st Century. A.A.Balkema, 2001, pp. 109–113.
  • [17] He J., Ling K., Wu X., Pei P., Pu H.: Static and Dynamic Elastic Moduli of Bakken Formation. Paper presented at the International Petroleum Technology Conference, Beijing, China, March 2019, IPTC-19416-MS, 2019. https://doi.org/10.2523/IPTC-19416-MS.
  • [18] Fjær E.: Static and Dynamic Moduli of a Weak Sandstone. Geophysics, vol. 74, 2009, pp. 103–112. https://doi.org/10.1190/1.3052113.
  • [19] Christaras B.: P-Wave Velocity and Quality of Building Materials. In: E. Yüzer, H. Ergin, A. Tugrul (eds.), Industrial minerals and building stones: IMBS 2003: September 15–18, 2003 Istanbul Turkey. IAEG, Istanbul 2003, pp. 295–300.
  • [20] Christaras B., Mariolakos I., Foundoulis J., Athanasias S., Dimitriou A.: Geotechnical Input for the Protection of Some Macedonian Tombs in Northern Greece. In: Proceedings 4th International Symposium on the Conservation of Monuments in the Mediterranean: new concepts, technologies and materials for the conservation and management of historic cities, sites and complexes: Rhodes, 6–11 May 1997. Technical Chamber of Greece, Athens 1997, pp. 125–132.
  • [21] Zezza F.: Evaluation Criteria of the Effectiveness of Treatments by Non Destructive Analysis. In: Proceedings of the 2nd Course of CUN University. School of Monument Concervation. Heraklion 1993, pp. 198–207.
  • [22] Wyllie M.R.J., Gregory A.R., Gardner L.W.: Elastic Wave Velocities in Heterogeneous and Porous Media. Geophysics, vol. 21, 1956, pp. 41–70. https://doi.org/10.1190/1.1438217.
  • [23] Kahraman S.: The Correlations between the Saturated and Dry P-Wave Velocity of Rocks. Ultrasonics, vol. 46, 2007, pp. 341–348. https://doi.org/10.1016/j.ultras.2007.05.003.
  • [24] Rajaoalison H., Zlotkowski A., Rambolamanana G.: Mechanical Properties of Sandstone Using Non-Destructive Method. Journal of Mining Institute, vol. 241, 2020, pp. 113–117. https://doi.org/10.31897/PMI.2020.1.113.
  • [25] Knez D., Rajaoalison H.: Discrepancy between Measured Dynamic Poroelastic Parameters and Predicted Values from Wyllie’s Equation for Water-Saturated Istebna Sandstone. Acta Geophysica, vol. 69, 2021, pp. 673–680. https://doi.org/10.1007/s11600-021-00543-3.
  • [26] Rao M.V.M.S., Prasanna Lakshmi K.J., Sarma L.P., Chary K.B.: Elastic Properties of Granulite Facies Rocks of Mahabalipuram, Tamil Nadu, India. Journal of Earth System Science, vol. 115, 2006, pp. 673–683. https://doi.org/10.1007/s12040-006-0005-z.
  • [27] Rajaoalison H., Knez D., Złotkowski A.: Zmiany dynamicznych właściwości mechanicznych piaskowca istebniańskiego nasyconego solanką pod wpływem temperatury i naprężenia [Changes of dynamic mechanical properties of brine-saturated Istebna sandstone under action of temperature and stress]. Przemysł Chemiczny, t. 98, nr 5, 2019, pp. 801–804. https://doi.org/10.15199/62.2019.5.22.
  • [28] Franquet J.A., Abass H.H.: Experimental Evaluation of Biot’s Poroelastic ParameterThree Different Methods. Paper presented at the Vail Rocks 1999, The 37th U.S. Symposium on Rock Mechanics (USRMS), Vail, Colorado, June 1999, ARMA-99-0349, American Rock Mechanics Association, 1999.
  • [29] Salemi H., Iglauer S., Rezagholilou A., Sarmadivaleh M.: Laboratory Measurement of Biot’s Coefficient and Pore Pressure Influence on Poroelastic Rock Behaviour. The APPEA Journal, vol. 58, no. 1, 2018, pp. 182–189. https://doi.org/10.1071/AJ17069.
  • [30] Korsnes R., Christensen H.F., Trads N., Hiorth A., Madland M.V.: Measuring the Biot Stress Coefficient and Its Implications on the Effective Stress Estimate. Paper presented at the 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013, ARMA-2013-282, American Rock Mechanics Association, 2013.
  • [31] Alam M.M., Borre M.K., Fabricius I.L., Hedegaard K., Røgen B., Hossain Z., Krogsbøll, A.S.: Biot’s Coefficient as an Indicator of Strength and Porosity Reduction: Calcareous Sediments from Kerguelen Plateau. Journal of Petroleum Science and Engineering, vol. 70, 2010, pp. 282–297. https://doi.org/10.1016/j.petrol.2009.11.021.
  • [32] Alam M.M., Christensen H.F., Fabricius I.L.: Effective Stress Coefficient and Biot’s Coefficient of Chalk from the Valhall Field, North Sea. Paper presented at the EUROPEC/EAGE Conference and Exhibition, Amsterdam, The Netherlands, June 2009, SPE-121795-MS, Society of Petroleum Engineers, 2009. https://doi.org/10.2118/121795-MS.
  • [33] Quosay A.A., Knez D., Ziaja J.: Hydraulic Fracturing: New Uncertainty Based Modeling Approach for Process Design Using Monte Carlo Simulation Technique. PLOS ONE, vol. 15, 2020, e0236726. https://doi.org/10.1371/journal.pone.0236726.
  • [34] Quosay A.A., Knez D.: Sensitivity Analysis on Fracturing Pressure Using Monte Carlo Simulation Technique. Oil Gas: European Magazine, vol. 42, iss. 3, 2016, pp. 140–144 .
  • [35] Ramos G.G., Wilton B.S., Polillo A.F.: Usage and Applicability of Pseudo-3D Stress Analysis in Borehole Stability Problems in Petroleum Drilling and Production Operations. Paper presented at the 2nd North American Rock Mechanics Symposium, June 19–21, 1996, ARMA-96-1067, American Rock Mechanics Association, 1996.
  • [36] Peng S., Fu J., Zhang J.: Borehole Casing Failure Analysis in Unconsolidated Formations: A Case Study. Journal of Petroleum Science and Engineering, vol. 59, iss. 3–4, 2007, pp. 226–238. https://doi.org/10.1016/j.petrol. 2007.04.010.
  • [37] Darvishpour A., Cheraghi Seifabad M., Wood D.A., Ghorbani H.: Wellbore Stability Analysis to Determine the Safe Mud Weight Window for Sandstone Layers. Petroleum Exploration and Development, vol. 46, iss. 5, 2019, pp. 1031–1038. https://doi.org/10.1016/S1876-3804(19)60260-0.
  • [38] Charlez P.A.: The Concept of Mud Weight Window Applied to Complex Drilling. Paper presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, October 1999, SPE-56758-MS, Society of Petroleum Engineers, 1999. https://doi.org/10.2118/56758-MS.
  • [39] Khazanehdari J., Sothcott J.: Variation in Dynamic Elastic Shear Modulus of Sandstone upon Fluid Saturation and Substitution. Geophysics, vol. 68, 2003, pp. 472–481. https://doi.org/10.1190/1.1567213.
  • [40] Cherblanc F., Berthonneau J., Bromblet P., Huon V.: Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content. Rock Mechanics and Rock Engineering, vol. 49, 2016, pp. 2033–2042. https://doi.org/10.1007/s00603-015-0911-y.
  • [41] Lai B., Liang F., Zhang J., Li L., Liu H., Al-Muntasheri G.: Fracturing Fluids Effects on Mechanical Properties of Organic Rich Shale. Paper presented at the 50th U.S. Rock Mechanics/Geomechanics Symposium, Houston, Texas, June 2016, ARMA-2016-180, American Rock Mechanics Association, 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fb3c443-b7d6-4645-8127-c415261cf263
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.