Identyfikatory
Warianty tytułu
Hydrodynamiczne łożyska wzdłużne z polimerową warstwą ślizgową
Języki publikacji
Abstrakty
Polymeric linings of sliding surfaces of the hydrodynamic bearings have been used successfully for over 50 years. Despite of their long history of operations and research, they have not become widespread in industrial applications. This fact may be surprising, considering the conclusions that have been publisher concerning bearing operation and design. This paper summarizes the current state of the art of the tilting-pad thrust bearings with a polymer lining of pad sliding surfaces. Bearing design and the most commonly used polymeric materials are described. The results of the latest theoretical and experimental researches by both bearing manufacturers and at scientific centres are presented. Observed properties of the bearings with polymer lining were compared to the properties of the bearings covered with Babbitt, which is the most frequently material used as lining for hydrodynamic bearings.
Pokrycia polimerowe powierzchni ślizgowych łożysk hydrodynamicznych są stosowane z sukcesem od ponad 50 lat. Mimo tak długiej historii eksploatacji oraz badań nie znalazły one, jak dotąd, szerokiego zastosowania przemysłowego. Fakt ten może dziwić, biorąc pod uwagę wnioski płynące z eksploatacji oraz dostępnych w literaturze badań łożysk tej odmiany konstrukcyjnej. W niniejszej pracy podsumowano stan aktualnej wiedzy dotyczącej hydrodynamicznych łożysk wzdłużnych z wahliwymi segmentami z pokryciem powierzchni ślizgowej warstwą polimeru. Opisano konstrukcję łożyska oraz scharakteryzowano najczęściej stosowane materiały polimerowe na pokrycia łożysk. Omówiono wyniki najnowszych badań teoretycznych oraz doświadczalnych prowadzonych zarówno przez producentów, jak i w ośrodkach naukowych. Wskazano również na zaobserwowane różnice we właściwościach łożysk tej odmiany konstrukcyjnej w porównaniu z łożyskami z najczęściej stosowanym pokryciem warstwy ślizgowej stopem łożyskowym.
Czasopismo
Rocznik
Tom
Strony
225--237
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- Gdańsk University of Technology, Mechanical Engineering Faculty, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- 1. Aleksandrov A. E.: Primienienije w podpiatnikach gidrogieneratorow elastycznych metałłopłastmasowych segmientow s ftoropłastowym pokrytiem powierchnosti trenja. Gridoteknicheskoe Stroitielstwo, 9, 1981, pp. 12–14, (in Russian).
- 2. Simmons J. E. L., Knox R. T., Moss W. O.: The development of PTFE (polytetrafluoroethylene) – faced hydrodynamic thrust bearing for hydrogenerator application in the United Kingdom. Proc IMechE Part J: J. of Engineering Tribology, vol. 212, 1998, pp. 345–352.
- 3. Henssler D., Schneider L., Gassmann S., Felix T.: Qualification and optimization of solid polymer tilting pad bearings for subsea pump application. Proc. of 44th Turbomachinery & 31st Pump Symposia, 14–17 September 2015, Huston, Texas, USA.
- 4. Inoue K., Deguchi K., Okude K., Fujimoto R.: Development of the water lubricated thrust bearing of the hydraulic turbine generator. Proc. 26th IAHR Symposium on Hydraulic Machinery and Systems, IOP Conf. Series: Earth and Environmental Science, 15, 2012.
- 5. Dupuis M., Maricic T.: Thrust bearing PTFE re-design for pump storage generator case study. Proc. of Hydro Vision 2015, 14–17 July 2015, Portland, USA.
- 6. North American PTFE Bearing, list of PTFE bearings implementations in the world, website: www.ptfehydro.com/ptfe/World-REFERENCES – access 02.2016.
- 7. ISO 14287:2012(E). Plain bearings – Pad materials for tilting pad bearings.
- 8. Tanaka T.: Approaches to the safer operation of thrust and journal bearings used in turbomachinery. Proc. of 10th EDF/Pprime Workshop, A: pp. 1–12, 6&7 October 2011, Futuroscope, France.
- 9. Pethybridge G., New N.: Polymer bearings for sever operating conditions. Proc. Of the EDF-LMS Workshop, D: pp. 1–6, Futuroscope, 7th October 2004.
- 10. Nakano T., Waki Y., Yamashita K., Kaikogi T., Uesato M., Yamada Y.: Development of thrust and journal bearings with high specific load for next generation steam turbine. Proc of the International Conference on Power Engineering 2007, pp. 350–355, October 23–27, 2007, Hangzhou, China.
- 11. Sumi Y., Sano T., Shinohara T., Tochitani N., Otani Y., Yamashita K., Nakano T.: Development of thrust bearings with high specific load. Proc. of ASME Turbo Expo: Turbine Technical Conference and Exposition, GT2014-26798, June 16–20, 2014, Dűsseldorf, Germany.
- 12. Wang S., Tan Q., Kou Z.: Thermal elastohydrodynamic lubrication analysis of large scale composite thrust bearing with sector pad faced by PTFE. Industrial Lubrication and Tribology, vol. 68(1), 2016, pp. 67–75.
- 13. Glavatskih S. B., Fillon M.: TEHD analysis of thrust bearings with PTFE – faced pads. Trans. ASME, J. of Tribology, vol. 128(1), 2006, pp. 49–58.
- 14. Ettles C. M., Knox R. T., Ferguson J. H., Horner D.: Test result for PTFE-faced thrust pads, with direct comparison against babbitt-faced pads and correlation with analysis. Trans. ASME, J. of Tribology, vol. 125(3), 2003, pp. 814–823.
- 15. Wodtke M., Fillon M., Schubert A., Wasilczuk M.: Study of the influence of heat convection coefficient on predicted performance of a large tilting-pad thrust bearing. Trans. ASME, J. of Tribology, vol. 135(2), 2013, 021702.
- 16. Wodtke M., Wasilczuk M.: Evaluation of apparent Young’s modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings. Tribology International, vol. 97, 2016, pp. 244–252.
- 17. Ricci R., Chatterton S., Pennacchi P., Vania A.: Multiphysics modeling of a thrust bearing with polymeric layered pads. Proc. of 10th EDF/Pprime, G: pp. 1–10, 6&7 October 2011, Futuroscope, France.
- 18. Wodtke M., Wasilczuk M.: Effect of coating material properties on tilting-pad thrust bearing performance. Proc. of 12th EDF/Pprime Workshop, pp. 1–12, 17&18 September 2013, Futuroscope, France.
- 19. Pajączkowski P., Spiridon M., Schubert A.: Oil film temperature measurements for highly loaded PEEK coated bearings. Proc. of Hydro 2015 – Advancing Policy and Practice, 26–28 October 2015, Bordeaux, France.
- 20. Glavatskih S. B.: Evaluating thermal performance of a PTFE-faced tilting pad thrust bearing. Trans. ASME, J. of Tribology, vol. 125(2), 2003, pp. 319–324.
- 21. Glavatskih S. B.: A method of temperature monitoring in fluid film bearings. Tribology International, vol. 37, 2004, pp. 143–148.
- 22. Bouyer J., Hanahashi M., Fillon M., Fujita M.: Experimental investigation of influence of materials on the behavior of a hydrodynamic tilting-pad thrust bearing. Proc. of 15th Nordic Symposium on Tribology, doc. 153, pp. 1–5, 12–15 June 2012, Throndheim, Norway.
- 23. Bouyer J., Nakano Y., Nagata M., Fillon M.: Experimental study on a hydrodynamic centered pivot tilting-pad thrust bearing. Proc. World Tribology Congress 2013, pp. 1–4, September 8–13, Torino, Italy.
- 24. Zhou J., Blair B., Argires J., Pitsch D.: Experimental performance study of a high speed oil lubricated polymer thrust bearing. Lubricants, 3, 2015, pp. 3–13.
- 25. Yamada Y., Uesato M., Tanaka M.: The tribological performance of PEEK lining bearing. Proc. of the EDF-LMS Workshop, B: pp. 1–7, Futuroscope, 7th October 2004.
- 26. Knox R. T., Simmons J. E. L.: PTFE faced bearings for marine propulsion applications. Proc. of Society of Naval Architects and Marine Engineers Propellers/ Shafting Symposium 2006, 19: pp. 1–6, Wiliamsburg, VA, USA, 12 13 September.
- 27. Glavatskih S. B.: Extending performance limits of tilt pad thrust bearings: a full scale study. Proc. of the EDF&LMS Workshop, G: 1-7, Futuroscope, 2nd October 2008.
- 28. Pajaczkowski P., Spiridon M., Schubert A., Brito G. C., Marra J. M.: Itaipu binacional hydro power plant thrust bearing design optimization for higher efficiency. J. of Mechanics Engineering and Automation, vol. 5, 2015, pp. 95–106.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fb19535-0452-454c-8894-c457d74864b6