PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Approximate solutions to the multiple-choice knapsack problem by multiobjectivization and Chebyshev scalarization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The method BISSA, proposed by Bednarczuk, Miroforidis, and Pyzel, provides approximate solutions to the multiple-choice knapsack problem. To fathom the optimality gap that is left by BISSA, we present a method that starts from the BISSA solution and it is able to provide a better approximation and in consequence a tighter optimality gap. Like BISSA, the new method is based on the multiobjectivization of the multiple-choice knapsack problem but instead of the linear scalarization used in BISSA, it makes use of the Chebyshev scalarization. We validate the new method on the same set of problems as the one used to validate BISSA.
Rocznik
Strony
53--66
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
  • Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
  • Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] Bednarczuk, E. M., Miroforidis, J., and Pyzel, P. A multi-criteria approach to approximate solution of multiple-choice knapsack problem. Computational Optimization and Applications 70, 3 (2018), 889–910.
  • [2] Brownlee, A. E. I., Wright, J. A., He, M., Lee, T., and McMenemy, P. A novel encoding for separable large-scale multi-objective problems and its application to the optimisation of housing stock improvements. Applied Soft Computing 96 (2020), 106650.
  • [3] Cacchiani, V., Iori, M., Locatelli, A., and Martello, S. Knapsack problems – An overview of recent advances. Part I: Single knapsack problems. Computers and Operations Research 143 (2022), 105692.
  • [4] Ehrgott, M. Multicriteria Optimization. Springer-Verlag, Berlin, Heidelberg, 2005.
  • [5] Kaliszewski, I. A modified weighted Tchebycheff metric for multiple objective programming. Computers and Operations Research 14, 4 (1987), 315–323.
  • [6] Kaliszewski, I. Soft Computing for Complex Multiple Criteria Decision Making. Springer Science & Business Media, New York, 2006.
  • [7] Kaliszewski, I., Miroforidis, J., and Podkopaev, D. Multiple Criteria Decision Making by Multiobjective Optimization. A Toolbox. Springer International Publishing, 2016.
  • [8] Kellerer, H., Pferschy, U., and Pisinger, D. Knapsack problems. Springer, Berlin, 2004.
  • [9] Khan, M. S. Quality Adaptation in a Multisession Multimedia System: Model, Algorithms and Architecture. PhD thesis, University of Victoria, Victoria, B. C., Canada, 1998.
  • [10] Klamroth, K., and Tind, J. Constrained optimization using multiple objective programming. Journal of Global Optimization 37, 3 (2007), 325–355.
  • [11] Knowles, J. D., Watson, R. A., and Corne, D. W. Reducing local optima in single-objective problems by multiobjectivization. In Evolutionary Multi-Criterion Optimization. First International Conference, EMO 2001, Zurich, Switzerland, March 7-9, 2001 Proceedings (Berlin, 2001), E. Zitzler, L. Thiele, K. Deb, C. A. Coello Coello, and D. Cornepp, Eds., vol. 1993 of Lecture Notes in Computer Science, Springer-Verlag, pp. 269–283.
  • [12] Kwong, C. K., Mu, L. F, Tang, J. F., and Luo, X. G. Optimization of software components selection for component-based software system development. Computers & Industrial Engineering 58, 4 (2010), 618–624.
  • [13] Lee, C., Lehoczky, J., Rajkumar, R. R., and Siewiorek, D. On quality of service optimization with discrete QoS options. In Proceedings of the Fifth IEEE Real-Time Technology and Applications Symposium (Vancouver, BC, Canada, 1999), IEEE, pp. 276–286.
  • [14] Martello, S., and Toth, P. Knapsack Problems: Algorithms and Computer Implementations. John Wiley and Sons, New York, 1990.
  • [15] Miettinen, K. M. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, 1999.
  • [16] Nauss, R. M. The 0–1 knapsack problem with multiple choice constraints. European Journal of Operational Research 2, 2 (1978), 125–131.
  • [17] Pisinger, D. Budgeting with bounded multiple-choice constraints. European Journal of Operational Research 129, 3 (2001), 471–480.
  • [18] Pyzel, P. On measures of risk related to IT system selection problem. Techniki Informacyjne – Teoria i Zastosowania, Wybrane Problemy 4, 16 (2014), 99–112.
  • [19] Segura, C., Coello Coello, C. A., Miranda, G., León, C. Using multi-objective evolutionary algorithms for singleobjective constrained and unconstrained optimization Annals of Operations Research 240, 1 (2016), 217–250.
  • [20] Sinha, P., and Zoltners, A. A. The multiple-choice knapsack problem. Operations Research 27, 3 (1979), 503–515.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1faeee39-59f0-4736-b28f-57759bb5e446
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.