PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distinguishing the Plateau and Valley Components of Profiles From Various Types of Two-Process Textures

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents methods of separating the plateau part for various types of two-process profiles, having the traces of two processes. The traditional method based on the plateau-valley threshold, according to the ISO 13565-3 standard, is not always sufficient, since the valley portion can include plateau roughness. Starting and finishing points of each plateau in the measured profiles should be determined. The procedure found in the technical literature depends on setting not only the plateau-valley threshold but also a lower threshold. This approach was a little modified for profiles that contain both random and deterministic topography components. A new procedure of determination of the lower threshold was proposed for stratified profiles containing two deterministic parts. The valleys can be characterized by their widths and the distance between them. In addition, a description of the material probability curve is proposed.
Rocznik
Strony
593--602
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., wzory
Twórcy
autor
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Thomas, T.R. (2014). Roughness and functions. Surface Topography. Metrology and Properties, 2(1), 014001.
  • [2] Campbell, J.C. (1973). Cylinder bore surface roughness in internal combustion engines. Its appreciation and control. Wear, 19(2), 163-168.
  • [3] Pawlus, P. (1993). Effects of honed cylinder surface topography on the wear of piston-piston ring-cylinder assemblies under artificially increased dustiness conditions. Tribology International, 26, 49-55.
  • [4] Santochi, M., Vignale, M. (1982). A study on the functional properties of the honed surface. CIRP Annals, 31(1), 432-434.
  • [5] Willis, E. (1986). Surface finish in relation to cylinder liners. Wear, 109(1-4), 351-366.
  • [6] Grabon, W., Pawlus, P., Sep, J. (2010). Tribological characteristics of one-process and two-process cylinder liner honed surfaces under reciprocating sliding conditions. Tribology International, 43(10), 1882-1892.
  • [7] Nilsson, B., Rosen, B.G., Thomas, T.R., Wiklund, D., Xiao, L. (2004). Oil pockets and surface topography: mechanism of friction reduction. XI International Colloquium on Surfaces, Chemnitz, Addendum.
  • [8] Etsion, I. (2005). State of the art in laser surface texturing. ASME Journal of Tribology, 127(1), 248-253.
  • [9] Yu, H., Huang, W., Wang, X. (2013). Dimple patterns for different circumstances. Lubrication Science, 25(2), 67-78.
  • [10] Nielsen, H.S. (1988). New approaches to surface roughness evaluation of special surfaces. Precision Engineering, 10(4), 209-213.
  • [11] Zipin, R.B. (1990). Analysis of the Rk surface roughness parameter proposals. Precision Engineering, 12(2), 106-108.
  • [12] Malburg, M.C., Raja, J. (1993). Characterization of surface texture generated by plateau-honing process. CIRP Annals, 42(1), 637-640.
  • [13] Anderberg, C., Pawlus, P., Rosen, B.G., Thomas, T.R. (2009). Alternative descriptions of roughness for cylinder liner production. Journal of Materials Processing Technology, 209(4), 1936-1942.
  • [14] Whitehouse, D.J. (1985). Assessment of surface finish profiles produced by multiprocess manufacture. Proc. Inst. Mech. Eng., 199(4), 263-270.
  • [15] Codgell, J.D. (2008). A Convolved multi-Gaussian probability distribution for surface topography application. Precision Engineering, 32(1), 34−46.
  • [16] Pawlus, P. (2008). Simulation of stratified surface topographies. Wear, 264(5−6), 457-463.
  • [17] Pawlus, P., Grabon, W. (2008). The method of truncation parameters measurement from material ratio curve. Precision Engineering, 32(4), 342-347.
  • [18] Dzierwa, A., Pawlus, P., Zelasko, W. (2014). Comparison of tribological behaviors of one-process and twoprocess steel surfaces in ball-on-disc tests. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228, 1195-1210.
  • [19] Dzierwa, A., Pawlus, P., Zelasko, W., Reizer, R. (2013). The study of the tribological properties of oneprocess and two-process textures after vapour blasting and lapping using pin-on-disc tests. Key Engineering Materials, 527, 217-222.
  • [20] Greenwood, J.A., Williamson, J.B.P. (1966). Contact of nominally flat surfaces. Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences. London, 295(1442), 300−319.
  • [21] Leefe, S.E. (1998). “Bi-Gaussian” representation of worn surface topography in elastic contact problems. Tribology for Energy Conservation, Dowson, D., et al., 281-290.
  • [22] Godi, A, Kuhle, A, De Chiffre L. (2014). A plateau-valley separation method for textured surfaces with a deterministic pattern. Precision Engineering, 38(1), 190−196.
  • [23] Godi, A., Kuhle, A., De Chiffre L. (2014). A new procedure for characterizing textured surfaces with a deterministic pattern of valley features. Meas. Sci. Technol, 24(8), 085009.
  • [24] Jakubiec, W., Brylski, M. (2003). Validation of software for calculation the surface roughness parameters according to ISO 13565-3. Proc. of 9th International Conference on Metrology and Properties of engineering Surfaces, Halmstad University, Sweden, 77-84.
  • [25] Watts, D.G., Bacon, W. (1974). Using an hyperbola as a transition model to fit two-regime straight-line data. Technometrics, 16(3), 369-373.
  • [26] Grabon, W., Pawlus, P. (2010). Probability description of two-process surface topography. 10th International Symposium on Measurement and Quality Control 2010 (ISMQC 2010) Osaka, Japan, 5−9 Sep., 380-384.
  • [27] Grabon, W., Pawlus, P., Galda, L., Dzierwa, A., Podulka, P. (2011). Problems of surface topography with oil pockets analysis. J. Phys. Conf. Ser., 311(1), 012023.
  • [28] Grabon, W., Pawlus, P., Koszela, W., Reizer, R. (2014). Proposals of methods of oil capacity calculation. Tribology International, 75, 117-122.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1faea96e-7f1a-4bea-9755-b98b5c8ee90d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.