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Abstract: The paper is an extension of the authors Kasperska E., Kasperski A., Bajon T. and 10 

Marjasz R. work (Kasperska et al., 2015) in the area of modeling and simulation of 11 

ecosystems on the base of "prey-predator" system dynamics model (presented on DSTA 12 

conference in 2015). The problem of connecting simulation with optimization is specially 13 

expanded to include both types of optimization - the policy optimization and the calibration. 14 

This new policy uses different set of parameters, model criteria and set of optimized 15 

parameters. The comparison between sensitivity analysis, optimization results and gaming 16 

outcome gives us a new view of learning process used by decision makers, model builders 17 

and students. We use the possibilities of visualization of simulation that are given by 18 

simulation language Vensim, and we try to apply calibration to detect the conditions, that 19 

stabilized that ecosystem and, what is quite new in the literature of this old, build the 20 

simulation game on base of that model to examine different scenarios of the human 21 

intervention in that ecosystem. At the end some conclusions are formulated.  22 

Keywords: simulation, system dynamics, optimization, Vensim. 23 

1. Introduction 24 

Ecosystems are the complex, dynamical, nonlinear and multilevel systems that should be 25 

analyzed, modeled, and simulated by appropriate methods and tools. One of such method – 26 

System Dynamics (Akhar et al., 2013; Coyle, 1996; Coyle, 1999; Garcia, 2006; Kasperska, 27 

2005; Kasperska, 2009; Kasperska et al., 2014; Kasperska et al., 2015; Kasperska and Mateja-28 

Losa, 2005; Krupa, 2008; Marjasz, 2014) – was developed in the late 1950s and early 1960s 29 

at the Massachusetts Institute of Technology Sloan School of Management by Jay W. 30 

Forrester. The approach can be applied to dynamics problems arising in complex social, 31 



112 E. Kasperska, A. Kasperski, R. Marjasz, E. Mateja-Losa 

managerial, economic or ecological systems. The main purpose of System Dynamics is to try 1 

to discover the structure that conditions the observed behavior of the system over time.  2 

System Dynamics tries to pose dynamic hypotheses that endogenously describe the 3 

observed behavior of system. 4 

The problem of managing of ecosystems is in the center of interest for observers of 5 

contemporary changes in the surrounding world. The methods of analysis and modeling of 6 

changes should be interdisciplinary, connecting such disciplines like ecology, economy, 7 

mathematics and informatics. Achievement of sustained development or opposing the effects 8 

of climate changing in nature or the disturbed relationships type: prey-predator, all of this 9 

requires from the decision makers the ability of prognostic looking into the future. The effects 10 

of the human activities are long-wave in time and space and sometimes unintuitive. 11 

In the complex systems, like ecosystems, there are many feedbacks, thus the dynamic 12 

behavior is a result of cooperation of those positive and negative loops. Like we already said, 13 

System Dynamics method is the appropriate tool for modeling and simulating such 14 

ecosystems. Many authors (Akhar et al., 2013; Fiddman, 2002; Garcia, 2006; 16. Ruth et al., 15 

2012; Sterman, 2002) have undertaken this problem, but in the literature of this field we have 16 

lack of the papers connecting the simulation with the optimization (Kasperka et al., 2014; 17 

Kasperska et al., 2015; Kasperska and Mateja-Losa, 2005). Such connection gives new 18 

opportunities for the analysis of decision making problems in ecosystems, and because of this 19 

we have undertaken this problem in our paper. 20 

The research work that had been done and described by authors in paper (Kasperska et al., 21 

2015) is expanded by 12 new experiments consisting of policy optimization scope. The 22 

theoretical idea is visualized on figure 1 that illustrates the relationships between both types of 23 

Optimization (policy and calibration), Sensitivity Analysis and Gaming. In the authors opinion 24 

this idea gives a new look on simulation and optimization issues, helping in the process of 25 

organizing the research work and furthermore in applying the results of research in practice.  26 

The object of experiments is described in the literature of this field (Coyle, 1996). The 27 

structure of Prey-Predator model in Vensim (Ventana) convention is presented on figure 2.  28 

A list of model variables and equations is presented below:  29 

 30 

Figure 1. Relationships between OPTIMIZATION, SENSITIVITY ANALYZIS and GAMING. 31 
Source: own idea. 32 

 33 
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Food Requirement Per Fox – FRPF = 5      (1) 1 

Fox Fecundity – FF = 0.05       (2) 2 

Fox Initial Population – FIP = 20      (3) 3 

Normal Fox Life – NFL = 120       (4) 4 

Average Fox Food Intake – AFFI(t) = ARKR(t)/FP(t)    (5) 5 

Average Fox Lifetime – AFL(t) = NFL(t)*FLR(t)    (6) 6 

Fox Birth Rate – FBR(t) = DELAY3(FIR(t),7)     (7) 7 

Fox Death Rate – FDR(t) = FP(t)/(AFL(t) + 1)     (8) 8 

Fox Insemination Rate – FIR(t) = FF*FP(t)     (9) 9 

Fox Lifetime Reduction – FLR(t) = W ITH LOOKUP (FFSF(t))  (10) 10 

Fox Lifetime Reduction – FLR(t) = W ITH LOOKUP (FFSF(t))  (11) 11 

Fox Population – FP(t + dt) = FP(t) + dt *(FBR(t)- FDR(t))   (12) 12 

Rabbit Initial Population – RIP = 300      (13) 13 

Rabbit Insemination Rate – RIR(t) = RF*RP(t)      (14) 14 

Rabbit Birth Rate – RBR(t) = DELAY3(RIR(t), 4)    (15) 15 

Rabbit Population – RP(t + dt) = RP (t) + dt*(RBR(t)-RKR(t))   (16) 16 

Rabbit Kill Rate – RKR(t) = FHE*RP(t)*FP(t)     (17) 17 

Average Rabbit Kill Rate – ARKR(t+dt) = SMOOTH(RKR(t), 2)  (18) 18 

Rabbit Fecundity – RF = 0.1       (19) 19 

Fox Hunting Efficiency – FHE=0.005      (20) 20 

 21 

Figure 2. Structure of Predator Prey Model in simulation Language Vensim. Source: own idea on the 22 
base of Coyle, 1996. 23 

24 
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Like professor Coyle said: the dynamics of the relationship between two populations of 1 

animals, one of which preys upon the other, is of great interest in ecological thinking and has 2 

been a fruitful area for analysis. One topic has been the academic need to understand why 3 

populations of animals undergo extreme fluctuations; another has been to suggest politics by 4 

which populations might be managed for economic reason or to preserve threatened species. 5 

In the paper of professor Coyle (Coyle, 1996) the mutual in influences between populations of 6 

rabbits and foxes were modeled. Using the model of rabbits - foxes, we have conducted many 7 

types of experiments including sensitivity analysis, calibration, and gaming. Those features 8 

(included in Vensim) weren’t available for prof. Coyle in his times. 9 

2. Experimental procedures 10 

The SD models contain usually many parameters. It is interesting to examine the effect of 11 

their variation on simulation output. We select some parameters and assign maximum and 12 

minimum values along with a random distribution over which to vary them to see their impact 13 

on model behavior. 14 

Vensim has a method of setting up such sensitivity simulation. Monte Carlo multivariate 15 

sensitivity works by sampling a set of numbers from within bounded domains. To perform 16 

one multivariate test, the distribution for each parameter specified is sampled, and the 17 

resulting values used in a simulation. When the number of simulation is set, for example, at 18 

200, this process will be repeated 200 times. In order to do sensitivity simulation you need to 19 

de ne what kind of probability distribution values for each parameter will be drawn from. The 20 

simplest distribution is the Random Uniform Distribution, in which any number between the 21 

minimum and maximum values is equally likely to occur. The Random Uniform Distribution 22 

is suitable for most sensitivity testing and is selected by default. Another commonly used 23 

distribution is the Normal Distribution (or Bell Curve) in which value near the mean is more 24 

likely to occur that values far from the mean. Results of sensitivity testing can be displayed in 25 

different formats. Time graphs dis-play behavior of a variable over a period of time and are 26 

displayed either in terms of confidence bounds or a separate values which combine to form an 27 

individual simulation traces. 28 

The second type of experiments we performed, was so called calibration, which is a type 29 

of optimization. Optimization can be used to validate and estimate parameters (calibration), or 30 

to select among alternative policies (policy optimization). 31 

In order to use optimization, you will need to de ne what is good and what is bad it’s 32 

called the payoff. The payoff is a measure, reported at the end of the simulation, stating 33 

numerically how good the simulation was. The payoff collapses your entire model, over the 34 

entire time it was simulated, into a single number. After defining the payoff, you need to 35 
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select which constants will vary in order to maximize the payoff. Validation of a model relies 1 

in part on comparing the model behavior to time data string collected in the real world. When 2 

a model is structurally completed and simulated properly, calibration of the model can 3 

proceed. Calibration involves finding the values of model constants that make the model 4 

generate behavior curves that best fit to real world data. It is possible to manually alter model 5 

constants, to try to achieve a better fit between the real world data and simulation output. For 6 

a complex model with many constants to optimize and many variables of data sets to fit, the 7 

process is very time consuming. Using optimization, Vensim will automatically vary the 8 

constants of your choice and look for the best t between the simulation output and your real 9 

world data. 10 

The third type of experiments we have performed was so called gaming. What are games 11 

in System Dynamics? Games are a way of actively engaging in process of a simulation. 12 

Games are examples of the flight simulator approach, where the user participate in the 13 

decisions that affect the simulation outcome for each step in time. A Vensim simulation 14 

model can be run as a game by stepping through time and making changes to gaming 15 

variables along the way. In contrast, a normal simulation model runs through the complete 16 

time span based on the initial setup of the model.  17 

 18 

 simulation step (0.125 [week]), (21) 

 simulation start time (0 [week]), (22) 

 simulation end time (300 [week]), (23) 

Rabbits Initial Population – 300 [Rabbits], (24) 

F ox Initial Population – 20 [Fox], (25) 

 19 

The last type of experiments we performed is a novelty in this paper. As mentioned in the 20 

explanation of calibration method the policy optimization uses the same mechanism utilizing 21 

the value of a payoff function as a method of finding an optimum value of chosen parameter. 22 

After defining the payoff, we selected which constants will vary in order to maximize or in 23 

the contrary to calibration to minimize the payoff. This approach gave us the possibility of 24 

conducting 12 new experiments, that are varying in object of optimization. Our objective 25 

changed from finding the equilibrium by utilizing calibration to finding the maximum or 26 

minimum of one objective function by utilizing policy optimization to some chosen parameter 27 

values. In the next section of this paper we present the results of some experiment types: 28 

sensitivity analysis, policy optimization, calibration and gaming.  29 

 30 

 31 

 32 

 33 

 34 
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3. Results  1 

We performed several sensitivity analysis experiments and as a result we can see, that 2 

initial values of both population have great influences on the behavior of the model (see: 3 

figure 3, 4, 5, 6). The question is: how to stabilize the ecosystem? The model is closed. The 4 

dynamics arise entirely from the structure, initial conditions and parameter values (including 5 

sharp non-linarites). How the system might be managed by the human intervention? For 6 

instance, foxes might have to be culled, and wild rabbits are the delicious food. We have 7 

performed some calibration type experiments, to solve the problem of choosing the initial 8 

values of populations (see table 1). 9 

 10 

 11 

Figure 3. Confidence bounds of the variable Rabbit Population for Normal Fox Lifetime between  12 
100 and 300 weeks. Source: own result. 13 
 14 

 15 

Figure 4. Confidence bounds of the variable Fox Population for Normal Fox Lifetime between  16 
100 and 300 weeks. Source: own result. 17 
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 1 
Figure 5. Confidence bounds of the variable Rabbit Population for: Rabbit Initial Population between 2 
200 and 400 rabbits; Fox Initial Population between 15 and 25 foxes. Source: own result. 3 
 4 

 5 
Figure 6. Confidence bounds of the variable Fox Population for: Rabbit Initial Population between 6 
200 and 400 rabbits; Fox Initial Population between 15 and 25 foxes. Source: own result. 7 

Table 1. 8 
Results of Calibration on Prey-Predator model (searching the condition for equilibrium state 9 

of the system) 10 

Assumptions for experiments 

initial values of 

levels 

conditions for calibration initial values of 

levels 

conditions for calibration 

Rabbits Foxes What variable 

must be fit? 

(Data sets) 

Results from 

calibration 

(round to total 

rabbits) 

Rabbits Foxes What 

variable 

must be fit? 

(Data sets) 

Results from 

calibration (round 

to total foxes) 

300 20 Fox 

population 

 = 20 

Rabbit initial 

population ≈ 

411  

[figure 7, 8, 9] 

300 20 Rabbit 

population 

= 300  

Fox initial 

Population 

≈ 15,  

Fox hunting 

efficiency 

≈ 0.0068  

 11 
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cont. table 1 1 
300 25 Fox 

population 

 = 25 

Rabbit initial 

population ≈ 

514,  

Fox efficiency 

≈ 0.004 

350 20 Rabbit 

population 

= 350  

Fox initial 

Population 

≈ 17,  

Fox hunting 

efficiency 

≈ 0.00587 

300 30 Fox 

population 

 = 30 

Rabbit initial 

population ≈ 

617, 

Fox efficiency 

≈ 0.003333 

400 20 Rabbit 

population 

= 400 

Fox initial 

Population 

≈ 19, Fox hunting 

efficiency 

≈ 0.0051 

Source: own idea. 2 

 3 

 4 

 5 
Figure 7. Example of calibration result shown in Vensim window. Source: own result. 6 
 7 

 8 

Figure 8. Graph illustrating the equilibrium for Rabbit Population achieved in calibration. Source: 9 
own result. 10 
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 1 
 2 
Figure 9. Graph illustrating the equilibrium for Fox Population achieved in calibration. Source: own 3 
result. 4 

 5 
As an extension of our work we performed 12 new policy optimization type experiments. 6 

Their assumptions are presented in Table 2 and furthermore as an example we also presented 7 

two figures containing graphics taken from second experiment performed in Vensim program 8 

(see: figure 10 and figure 11). What must be explained is the difference in priorities for 9 

decision-makers, which indicates what type of optimization is performed: maximization or 10 

minimization. Technically speaking this is not a problem of simulation language Vensim, but 11 

the need of careful choosing of so called built-in payoff function, which is summarized during 12 

simulation process. For example, if our goal is the minimization of the number of killed 13 

rabbits, then the payoff function will be Rabbit Kill Rate. 14 

 15 

 16 

 17 
Figure 10. Example of policy optimization result shown in Vensim window. Source: own result. 18 
 19 
 20 

 21 

 22 
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Table 2. 1 
Results of Policy optimization on Prey-Predator model (searching the optimized value of 2 

chosen parameters and payoff function) 3 

Experiment 

no. 

Type of 

optimization 

Payoff 

function Optimized 
parameters 

Scope for 
value of 
parameters 

Optimal 

value for 

payoff 

function 

Optimal 

value for 

parameters Objective 

function 

1 MAX Rabbit Birth 

Rate 

Rabbit 

Initial 

Population 

(RIP) 

(200, 400) 18394.4 200 

Number of 

Birthed 

Rabbits 

2 MAX Rabbit Birth 

Rate 

Rabbit 

Initial 

Population 

(RIP) 

Fox Initial 

Population 

(FIP) 

(200, 400) 

 

 

(15, 25) 

21113.3 

[figure 10] 

[figure 11] 

200 

 

 

15 
Number of 

Birthed 

Rabbits 

3 MAX Rabbit Birth 

Rate 

Rabbit 

Initial 

Population 

(RIP) 

Fox Initial 

Population 

(FIP) 

Normal Fox 

Life (NLF) 

(200, 400) 

 

 

(15, 25) 

 

 

(100, 300) 

269399 200 

 

 

15 

 

 

100 

Number of 

Birthed 

Rabbits 

4 MIN Rabbit Kill 

Rate 

Rabbit 

Initial 

Population 

(RIP) 

(200, 400) 12348.7 400 

Number of 

Killed Rabbits 

5 MIN Rabbit Kill 

Rate 

Rabbit 

Initial 

Population 

(RIP) 

Fox Initial 

Population 

(FIP) 

(200, 400) 

 

 

(15, 25) 

12741.3 352.18 

 

 

23.15 
Number of 

Killed Rabbits 

6 MIN Rabbit Kill 

Rate 

Rabbit 

Initial 

Population 

(RIP) 

Fox Initial 

Population 

(FIP) 

Normal Fox 

Life (NLF) 

(200, 400) 

 

 

(15, 25) 

 

 

(100, 300) 

84340.3 265.77 

 

 

20.26 

 

 

300 

 

Number of 

Killed Rabbits 

7 MAX Fox Birth Rate Fox Initial 

Population 

(FIP) 

(15, 25) 300.757 21.1327 

Number of 

Birthed Foxes 

8 MAX Fox Birth Rate Fox Initial 

Population 

(FIP) 

Rabbit 

Initial 

Population 

(RIP) 

(15, 25) 

 

 

(200, 400) 

303.3 25 

 

 

341.69 

Number of 

Birthed Foxes 
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cont. table 2 1 
9 MAX Fox Birth Rate Fox Initial 

Population 

(FIP) 

Rabbit 

Initial 

Population 

(RIP) 

Normal Fox 

Life (NLF) 

(15, 25) 

 

 

(200, 400) 

 

 

(100, 300) 

304.401 25 

 

 

400 

 

 

134.633 

Number of 

Birthed Foxes 

10 MIN Fox Death 

Rate 

Fox Initial 

Population 

(FIP) 

(15, 25) 289.039 15 

Number Dead 

Foxes 

11 MIN Fox Death 

Rate 

Fox Initial 

Population 

(FIP) 

Rabbit 

Initial 

Population 

(RIP) 

(15, 25) 

 

 

(200, 400) 

272.514 15 

 

 

286.361 
Number Dead 

Foxes 

12 MIN Fox Death 

Rate 

Fox Initial 

Population 

(FIP) 

Rabbit 

Initial 

Population 

(RIP) 

Normal Fox 

Life (NLF) 

(15, 25) 

 

 

(200, 400) 

 

 

(100, 300) 

272.213 15 

 

 

298.956 

 

 

100.129 

Number Dead 

Foxes 

Source: own idea. 2 

 3 

Figure 11. Graph illustrating the Rabbit Population for maximized Number of Birthed Rabbits with 4 
Rabbit initial population and Fox Initial Population optimum values. Source: own result. 5 
 6 
 7 
 8 
 9 
 10 
 11 
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4. Discussion of results and gaming experiment  1 

On model Prey-Predator we have performed four types of experiments. First we used so 2 

called sensitivity analysis. That experiment shows the sensitivity of the system to the changes 3 

in parameter values. Large scale models with non-linarites are very sensitive to changes in 4 

several parameters and are non-sensitive for the rest of them. Searching this problem is very 5 

important, because it's an entrance for the process of optimization. In his book (Coyle, 1996) 6 

prof. Coyle said that: "the purpose of the model is to represent the dynamics of predator/prey 7 

behavior and to study how those dynamics change with uncertainties in the data. When the 8 

system has been well understood, the purpose might develop into understanding how the 9 

system might be managed by human intervention." Of course in prof. Coyle's times it wasn't 10 

possible to use automatic search of sensitivities in data. Now with the use of language 11 

Vensim, we have unlimited possibilities of experimentation, and we performed few of them. 12 

They show that populations of fox and rabbits are characterized by sustained oscillations.  13 

It must be emphasized that the oscillations arise entirely from within the model and not due to 14 

outside influence. Prof. Coyle achieved by "trial and error" method the result that with 300 15 

rabbits, there is no value of fox population, which stabilize the system. In our paper we 16 

presented results of so called calibration, and they conclude that it is possible (see: table 1) to 17 

stabilize the system with small modification of data and the process of automatic calibration 18 

by Vensim.  19 

The third type of experiment – the so called policy optimization (see: table 2) - gives us  20 

a new look on the priorities taken into account in decision-making part of optimization 21 

process. Until now we considered only the scenarios of finding an equilibrium which 22 

stabilizes the system. Now we change our goal to find a maximum or minimum value of one 23 

parameter without the requirement of system stability. As a result we obtain higher periodical 24 

system oscillations (kept in sensible boundaries) with an achievement of obtaining the 25 

maximum or minimum value by the chosen parameter from time to time. In real world such 26 

situations may be desirable – for example if we want to rise the population of rabbits (prey) 27 

before the declaration of hunting season organized by humans. The creation of conditions for 28 

high system oscillations can be a part of wider strategy to obtain an equilibrium that t our 29 

changing demands. This new approach shows the need for simulation of models with the 30 

possibility of human interventions. 31 

 32 
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 1 

Figure 12. Graph for game 1 disease in rabbit birth population. Source: own result. 2 
 3 

 4 

Figure 13. Graph for game 2 growth of fox population. Source: own result. 5 

Table 3. 6 
Results of Gaming on Prey-Predator Model (different human intervention and acting of 7 

nature) 8 

Assumptions for gaming 

Game 1 – Disease in rabbit birth population 

Initial value of levels Gaming variables Dynamic behavior 

presented 

on figures 
Initial value Changing the value 

during time horizon 

Rabbit population: 300 

 

Fox population: 20 

Rabbit Birth Rate: 30 

 

In time t = 100 weeks 

Rabbit Birth Rate: 10 

In time t = 200 weeks 

Rabbit Birth Rate: 20 

[Figure 12] Rabbit 

Population, 

Fox Population, 

Rabbit Birth Rate 

 9 

10 
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cont. table 3 1 
Game 2 – Growth of fox population 

Initial value of levels Gaming variables Dynamic behavior 

presented 

on figures 
Initial value Changing the value 

during time horizon 

Rabbit population: 300 

 

Fox population: 20 

Fox Birth Rate: 1 

 

In time t = 100 weeks 

Fox Birth Rate: 2 

In time t = 200 weeks 

Fox Birth Rate: 1.5 

[Figure 13] Rabbit 

Population, 

Fox Population, 

Fox Birth Rate 

Source: own idea. 2 

In the context of the results of our experimentation: sensitivity analysis and both type of 3 

optimization, it was very interesting and innovative to perform the fourth type of experiments, 4 

so called – gaming. We examined different scenarios (see: game 1, game 2 in table 3) of the 5 

human intervention in that ecosystem or the intervention of nature. For example, we changed 6 

Rabbit birth rate (hypothetically) two times during the horizon of simulation, and we have the 7 

estimation how the system will behave after such scenario. It has practical implication, 8 

because in the real world the population of rabbits can die from disease such as myxomatosis, 9 

which is highly infectious and almost inevitably fatal for rabbits. Of course it has effects on 10 

the fox food supply. So these feedbacks can be examine by performing different games, with 11 

different scenarios. Problems similar to this arise in cases such as fishing policy. How many 12 

fish can safely be caught and what are the consequences for both fish and fisherman versus 13 

fishing industries subsides are obvious policy areas.  14 

5. Final conclusion 15 

Firstly, we would like to draw a number of theoretical conclusions: 16 

 System Dynamics method is appropriate for modeling and simulation of the 17 

ecosystems, specially prey-predator systems, 18 

 experimental procedures such as: sensitivity analysis, calibration, policy optimization 19 

and gaming; allow to search: sensitive parameters, conditions that stabilize the system, 20 

optimal value of parameters and payoff functions and examine different scenarios of 21 

the human intervention in that ecosystem (or "intervention" of nature). 22 

Secondly, we would like to offer some practical conclusions: 23 

 the simulation language Vensim is "friendly" and easily used tool for simulation and 24 

different type of research, 25 

 many "old" and widely known models never were investigated from perspectives that 26 

Vensim offers, so this is a promising field for researchers and practitioners as well. 27 

The comparison of possibilities for different types of research opens new perspectives for 28 

connecting them and applying results in the process of model building, the process of 29 
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decision-making and learning (for practitioners as well for students who are learning new 1 

methods and discovering new tools). 2 
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