Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this work is to discuss the turbulent air hydro-thermal phenomena over a rectangular microchannel with different types of baffle (rectangular, triangular, and trapezoidal) mounted on both the walls of the microchannel. The finite volume method with the second order upwind scheme has been utilized to discretize the governing equations and to study the turbulent airflow characteristics; the SST k-ꞷ turbulence model has been adopted. For nine different cases, the different characteristics of fluid flow phenomena and thermal behaviour with the variations in the Reynolds number ranging from [5,000-25,000] and for three different values of inter baffle spacing have been studied in this manuscript. Due to the presence of baffle, it is revealed that the vortex arises on the upper wall and the thermal phenomena enhances with the decrease in inter baffle spacing.
Rocznik
Tom
Strony
41--52
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, National Institute of Technology Silchar, Silchar-788010, Assam, India
autor
- Department of Mathematics, Mathabhanga College, Cooch Behar-736146, West Bengal, India
autor
- Department of Mathematics, Alipurduar University, Alipurduar-736121, West Bengal, India
Bibliografia
- [1] Yang, Y.T., & Hwang, C.Z. (2003). Calculation of turbulent flow and heat transfer in a porous baffled channel. International Journal of Heat and Mass Transfer, 46(5), 771-780.
- [2] Saffar, A.M., & Damangir, E. (1995). A general correlation for determining optimum baffle spacing for all types of shell and tube exchangers. International Journal of Heat and Mass Transfer,38(13), 2501-2506.
- [3] Founti, M., & Whitelaw, J.H. (1985). Shell-side flow in a model disc-and-doughnut heat exchanger. Experiments in Fluids, 3, 293-305.
- [4] Pandey, L., & Singh, S. (2021). Numerical analysis for heat transfer augmentation in a circular tube heat exchanger using a triangular perforated Y-shaped insert. Fluids, 6, DOI: 10.3390/luids6070247.
- [5] Nagarajan, P.K., & Sivashanmugam, P. (2011). Heat transfer enhancement studies in a circular tube fitted with right-left helical inserts with spacer, World Academy of Science, Engineering and Technology. Int. J. Mech. Mechatron Eng., 5, 2091-2095.
- [6] Gururatana, S., & Skullong, S. (2019). Experimental investigation of heat transfer in a tube heat exchanger with airfoil-shaped insert. Case Stud. Therm. Engin., 14, 100462.
- [7] Tang, X.Y., & Zhu, D.S. (2012). Experimental and numerical study on heat transfer enhancement of a rectangular channel with discontinuous crossed ribs and grooves. Chin. J. Chem. Eng., 20(2), 220-230.
- [8] Sripattanapipat, S., & Promvonge, P. (2009). Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles. Int. Commun Heat Mass Transfer, 36(1), 32-38.
- [9] Habib, M.A., Mobarak, A.M., Sallak, M.A., Abdel, H., & Affify, R.I. (1994). Experimental investigation of heat transfer and flow over baffles of different heights. Journal of Heat Transfer, 116(2), 363-368.
- [10] Siddiqui, M.H., & Kamran, N. (2007). Heat transfer augmentation in a heat exchanger tube using a baffle. International Journal of Heat and Fluid Flow, 28(2), 318-328.
- [11] Demartini, L., Crlos, V., Horacio, A., & Möller, S.V. (2004). Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. Journal of the Brazilian Society ofMechanical Sciences and Engineering, 26(2), 153-159.
- [12] Saha, S., Biswas, P., & Nath, S. (2020). Numerical simulations of Newtonian fluid flow through a suddenly contracted rectangular channel with two different types of baffle plates. Soft Computing, 25, 9873-9885.
- [13] Saha, S., Das, N.A., Biswas, P., & Raut, S. (2021). Numerical simulations of turbulent airflow phenomena and characteristics of heat transfer through a rectangular microchannel with mixed type baffles. International Journal of Fluid Mechanics Research, 48(3), 1-16.
- [14] Saha, S., Biswas, P., Raut, S., & Das, A. (2021). Convective heat transfer of laminar nano-fluids flow through a rectangular micro-channel with different types of baffle-corrugation. Int. J. Computational Methods in Engineering Science and Mechanics, 22(2), 1-13.
- [15] Saha, S., & Das, A. (2021). Flow bifurcation phenomena of shear-thinning and Newtonian fluids in a rectangular channel in presence of intermediate steps: using Carreau-Yasuda model. J. Applied Fluid Mechanics, 14(4), 1283-1293.
- [16] Spalding, D.B. (1974). The numerical computation of turbulent flow. Comp. Methods Appl. Mech. Eng., 3, 269-280.
- [17] Dittus, F., & Boelter, L. (1985). Heat transfer in automobile radiators of the tubular type. Int. Commun Heat Mass Transfer, 12(1), 13-22.
- [18] Petukhov, B.S. (1970). Advances in Heat Transfer. Academic Press, 6, 503-504.
- [19] Yu, C., Zhang, H., Zeng, M., Wang, R., & Gao, B. (2020). Numerical study on turbulent heat transfer performance of a new compound parallel flow shell and tube heat exchanger with longitudinal vortex generator. Applied Thermal Engineering, 164, 114-129.
- [20] Bicer, N., Engin, T., Yas ̧ar, H., Büyükkaya, E., & Aydın, A. (2020). Design optimization of a shell-and tube heat exchanger with novel three-zonal baffle by using CFD and taguchi method. International Journal of Thermal Sciences, 155, 106-117.
- [21] Wang, X., Zheng, N., Liu, Z., & Liu, W. (2018). Numerical analysis and optimization study on shell-side performances of a shell and tube heat exchanger with staggered baffles. International Journal of Heat and Mass Transfer, 124, 247-259.
- [22] Saha, S. (2021). Numerical Simulation of Turbulent Flow Through a Sudden expansion Channel: Comparison Between Three models. Lecture Notes in Mechanical Engineering, 222, 49-56.
- [23] Saha, S., Biswas, P., Das, N.A. & Raut, S. (2021). Analysis of heat transfer characteristics through an rectangular enclosure. Mater. Today: Proc., DOI: 10.1016/j.matpr.2021.04.191.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fad0b09-792a-41b1-b2ad-d1634eb9d9de