PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation Research of the Influence of Compression Ratio on the Performance of an Aircraft Piston Diesel Engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, the opposed-piston engines have become increasingly popular in the automotive and aerospace industries. Therefore, it is necessary to conduct the research on this type of drive. The paper presents the simulation research of a two-stroke opposed-piston diesel engine designed for propulsion of light aircrafts. The influence of the change of the compression ratio on the selected engine performance was investigated (indicated mean effective pressure, peak firing temperature and pressure, specific fuel consumption, power consumed by the compressor). The AVL BOOST software was used to perform the simulation tests. A zero-dimensional engine model equipped with a mechanical compressor was developed. On the basis of the created model, a series of calculations was performed for the assumed values of the compression ratio for four engine operating points: take-off power, maximum continuous power and cruising power at two different altitudes. The obtained results were subjected to a comparative analysis and the most important conclusions connected with the influence of the change in the compression ratio on the achieved performance were presented.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems; ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems; ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems; ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Adnan P., Halit Y., Bahri S. Performance and exhaust emission characteristics of a lower compression ratio LHR Diesel engine. Energy Conversion and Management, 44, 2003, 163–175.
  • 2. Alqahtani A., Wyszynski M.L., Mazuro P., Xu H. Evaluation of the effect of variable compression ratios performance on opposed piston 2-stroke engine. Combustion Engines, 56(4), 2017, 97-106. DOI: 10.19206/CE-2017-417.
  • 3. Asadi A., Zhang Y., Mohammadi H., Khorand H., Rui Z., Doranehgard M.H., Bozorg M.V. Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: A CFD study. Renewable Energy, 138, 2019, 79-89. DOI: 10.1016/j.renene.2019.01.069.
  • 4. Bhaskor J.B., Ujjwal K.S., Soumya C., Vijay V. Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. Energy Conversion and Management, 87, 2014, 1000–1009. DOI: 10.1016/j.enconman.2014.07.080.
  • 5. Laguitton O., Crua B., Cowell T., Heikal M.R., Gold M.R. The effect of compression ratio on exhaust emissions from a PCCI diesel engine. Energy Conversion and Management, 48, 2007, 2918–2924. DOI: 10.1016/j.enconman.2007.07.016.
  • 6. Cenk S., Metin G. Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodieselblended diesel fuel. Applied Thermal Engineering, 31, 2011, 3182-3188. DOI: 10.1016/j.applthermaleng.2011.05.044.
  • 7. Chen L., Ding S., Liu H., Lu Y., Li Y., Roskilly A. P. Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine. Applied Energy, 203, 2017, 91-100. DOI: 10.1016/j.apenergy.2017.06.036.
  • 8. Compressor Eaton TVS-R900 Specification https:// www.eaton.com/us/en-us/catalog/engine-solutions/tvs-r900.specifications.html.
  • 9. Czyz Z. Siadkowska K., Sochaczewski R. CFD Analysis of Charge Exchange in an Aircraft Opposed-Piston Diesel Engine. MATEC Web of Conferences, 252, 2018, 04002. DOI: 10.1051/matecconf/201925204002.
  • 10. D’Errico G., Cerri T., Pertusi G. Multi-objective optimization of internal combustion engine by means of 1D fluid-dynamic models. Applied Energy, 88(3), 2011, 767-777. DOI: 10.1016/j.apenergy.2010.09.001.
  • 11. Grabowski L., Pietrykowski K., Karpiński P. Charging process analysis of an opposed-piston two-stroke aircraft Diesel engine. ITM Web of Conferences, 15, 2017, 03002. DOI: 10.1051/itmconf/20171503002.
  • 12. Grabowski Ł., Siadkowska K., Skiba K. Simulation Research of Aircraft Piston Engine Rotax 912. MATEC Web of Conferences, 252, 2019, 05007. DOI: 10.1051/matecconf/201925205007.
  • 13. Magryta P., Gęca M. FEM analysis of piston for aircraft two stroke diesel engine. MATEC Web of Conferences, 252, 2018, 07004. DOI: 10.1051/ matecconf/201925207004.
  • 14.Jakovljević I., Mijailović R., Mirosavljević P. Carbon dioxide emission during the life cycle of turbofan aircraft. Energy 148, 2018, 866-875. DOI: 10.1016/j.energy.2018.02.022.
  • 15.Jiaqiang E. Pham M. H., Deng Y., Nguyen T., Duy V. N., Le D. C., Zuo W., Peng Q., Zhang Z. Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends. Energy, 149, 2018, 979- 989. DOI: 10.1016/j.energy.2018.02.053.
  • 16.Jindal S., Nandwana B.P., Rathore N.S., Vashistha V. Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Jatropha methyl ester. Applied Thermal Engineering, 30, 2010, 442–448. DOI: 10.1016/j.applthermaleng.2009.10.004.
  • 17. Klein S.A. An Explanation for Observed Compression Ratios in Internal Combustion Engines. Journal of Engineering for Gas Turbine and Power, 113(4), 1991, 511-513. DOI: 10.1115/1.2906270.
  • 18.Li Y., Li H., Guo H., Li Y., Yao M. 2017. A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model. Applied Energy, 205, 2017, 153-162. DOI: 10.1016/j.apenergy.2017.07.071.
  • 19. Lu X., Zhang F., Liu Y., Wang S. Analysis on Influences of Scavenging Ports Width to Scavenging Process Based on Opposed Piston Two Stroke Diesel Engine. Energy Procedia, 158, 2019, 5838- 5843. DOI: 10.1016/j.egypro.2019.01.543.
  • 20. Martyn R. Benefits and Challenges of Variable Compression Ratio (VCR). SAE Technical Paper, 2003, 003-01-0398. DOI: 10.4271/2003-01-0398.
  • 21. Mattarelli E., Cantore G., Rinaldini C. A., Savioli T. Combustion System Development of an Opposed Piston 2-Stroke Diesel Engine. Energy Procedia 126, 2017, 1003-1010. DOI: 10.1016/j. egypro.2017.08.268.
  • 22. McAllister C.D., Simpson T.W. Multidisciplinary robust design optimization of an internal combustion engine. Journal of Mechanical Design, 125(1), 2003, 124-130. DOI: 10.1115/1.1543978.
  • 23. Ning L., Duan Q., Wei Y., Zhang X., Yang B., Zeng K. Experimental investigation on combustion and emissions of a two-stroke DISI engine fueled with aviation kerosene at various compression ratios. Fuel, 259, 2020, 116224. DOI: 10.1016/j.fuel.2019.116224.
  • 24. Nowacki M., Olejniczak D. Correction of the method of assessing exhaust emission during the flight of the aircraft, including impact of changes in flight altitude on engine performance parameters. Transportation Research Procedia, 43, 2019, 3-10. DOI: 10.1016/j.trpro.2019.12.012.
  • 25. Pastor J.V., Lopez J.J., Garcia J.M., Pastor J.M. A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2008, 2871- 2885. DOI: 10.1016/j.fuel.2008.04.017.
  • 26. Payri F., Benajes J., Margot X., Gil A. CFD modeling of the in-cylinder flow in direct-injection diesel engines. Computers & Fluids, 33(8), 2004, 995- 1021. DOI: 10.1016/j.compfluid.2003.09.003.
  • 27. Pirault J.P., Flint M. Opposed Piston Engines: Evolution, Use, and Future Applications. SAE International, 2010.
  • 28. Reitz R.D., Rutland C.J. Development and Testing of Diesel-Engine CFD Models. Progress in Energy and Combustion Science, 21(2), 1995, 173-196. DOI: 10.1016/0360-1285(95)00003-Z.
  • 29. Ryan T.W., Callahan T.J. Homogeneous Charge Compression Ignition of Diesel Fuel. SAE Technical Paper, 1996, 961160. DOI: 10.4271/961160.
  • 30. Takeuchi K., Toyao T. Development of second generation common rail system. IMechE Conference Transactions, 2, 2003, 1-9.
  • 31. Zhang Z., Zhang P. Cross-impingement and combustion of sprays in high-pressure chamber and opposed-piston compression ignition engine. Applied Thermal Engineering, 144, 2018, 137-146. DOI: 10.1016/j.applthermaleng.2018.08.038.
  • 32. Zhang Z.Y., Zhang P., Zhao Z.F. Spray Impingement and Combustion in a Model Opposed-Piston Compression Ignition Engine. Combustion Science And Technology, 189(11), 2017, 1943-1965. DOI: 10.1080/00102202.2017.1340278.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fa91954-e80e-475f-9eb0-ff73f19f9512
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.