Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The FEM simulations of the ECAP including real conditions of the process - the friction between the metal extruded and the die walls, as well as, the channels rounding, were done here in two scales - macro- and micro-. The macroscopic analyses were done for isotopic material with a non-linear hardening using the UMAT user material procedure. The pure Lagrangian approach was applied here. The stress, strains and their increments, as well as, the deformation gradient tensor were recorded for selected finite elements in each calculation step. The displacements obtained in the macroscopic FEM analysis are then used as the kinematic input for the polycrystalline structure. The dislocation slip was included as the source of the plastic deformation here for the face-centered cubic structure. The results obtained with the use of the crystal plasticity show the heterogeneous distribution of stress and strain within the material associated with the grains anisotropy. The results in both micro- and macro- scales are coincident. The FEM analyses show the potential of the application of the crystal plasticity approach for solving elastic-plastic problems including the material forming processes.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1649--1655
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wzory
Twórcy
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Materials Forming and Processing, 8 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Bibliografia
- [1] M. Wójcik, A. Skrzat, Contin. Mech. Thermodyn. 32, 959-969 (2020). DOI: https://doi.org/10.1007/s00161-019-00805-y
- [2] K. Kowalczyk-Gajewska, S. Stupkiewicz, Arch. Metall. Mater. 58 (1), 113-118 (2013). DOI: https://doi.org/0.2478/v10172-012-0160-y
- [3] P. Wei, C. Lu, K.Tieu, G.Y. Deng, IOP Conf. Ser.: Mater. Sci. Eng. 63 (1), 012045 (2014). DOI: https://doi.org/10.1088/1757-899X/63/1/012045
- [4] K.B. Golafshani, S. Nourouzi, H.J. Aval, Mater. Sci. Technol. 35 (9), 1061-1070 (2019). DOI: https://doi.org/10.1080/02670836.2019.1612577
- [5] D.N. Lee, Scr. Mater. 43 (2), 115-118 (2000). DOI: https://doi.org/10.1016/S1359-6462(00)00377-8
- [6] L. Cui, S. Shao, H. Wang, G. Zhang, Z. Zhao, C. Zhao, Processes 10, 2181 (2022). DOI: https://doi.org/10.3390/pr10112181
- [7] E. Baysal, O. Koçar, E. Kocaman, U. Köklü, Metals 12, 1800 (2022). DOI: https://doi.org/10.3390/met12111800
- [8] M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, S.H. Seyyedein, Prog. Nat. Sci. 26 (2), 182-191 (2016). DOI: https://doi.org/10.1016/j.pnsc.2016.03.003
- [9] G.M. Naik, S. Narendranath, S.S. Satheesh Kumar, J. Mater. Eng. Perform 28, 2610-2619 (2019). DOI: https://doi.org/10.1088/2053-1591/ab2ddf
- [10] M.I. Abd El Aal, M.M. Sadawy, Trans. Nonferrous Met. Soc. China 25 (12), 3865-3876 (2015). DOI: https://doi.org/10.1016/S1003-6326(15)64034-1
- [11] D. Lu, J. Jiang, X. Liao, K.M. Nesterov, R.K. Islamgaliev, R.Z. Valiev, K. Liu, J. Mater. Eng. Perform 26, 2110-2117 (2017). DOI: https://doi.org/10.1007/s11665-017-2660-4
- [12] R. Kočiško, T. Kvačkaj, A. Kováčová, J. Achiev. Mater. Manuf. Eng. 62 (1), 25-30 (2014). DOI: https://doi.org/10.12693/APhysPolA.131.1336
- [13] M. El-Shenawy, M.M.Z. Ahmed, A. Nassef, M. El-Hadek, B. Alzahrani, Y. Zedan, W.H. El-Garaihy, Metals 11, 938 (2021). DOI: https://doi.org/10.3390/met11060938
- [14] A.I. Alateyah, M.M.Z. Ahmed, Y. Zedan, H.A. El-Hafez, M.O. Alawad, W.H. El-Garaihy, Experimental and Numerical Investigation of the ECAP Processed Copper: Microstructural Evolution, Crystallographic Texture and Hardness Homogeneity, Metals 11, 607 (2021). DOI: https://doi.org/10.3390/met11040607
- [15] S. Li, Acta Materialia 56 (5), 1031-1043 (2008). DOI: https://doi.org/10.1016/j.actamat.2007.11.003
- [16] S. Ferrasse, V.M. Segal, S.R. Kalidindi, F. Alford, Mater. Sci. Eng. A 368 (1-2), 28-40 (2004). DOI: https://doi.org/10.1016/j.msea.2003.09.077
- [17] G. Yang, S.J. Park, Materials 12, 2003 (2019). DOI: https://doi.org/10.3390/ma12071177
- [18] G. Deng, PhD thesis, Crystal plasticity finite element method simulation of equal channel angular pressing, University of Wollongong, Wollongong, Australia (2014).
- [19] M.P. Petkov, E. Elmukashfi, E. Tarleton, A.C.F. Cocks, IJMS 211, 106715 (2021). DOI: https://doi.org/10.1080/14786435.2022.2121867
- [20] S. Li, I.J. Beyerlein, D.J. Alexander, S.C. Vogel, Acta Mater. 53 (7), 2111-2125 (2005). DOI: https://doi.org/10.1016/j.actamat.2005.01.023
- [21] L.S. Tóth, R.A. Massion, L. Germain, S.C. Baik, S. Suwas, Acta Mater. 52 (7), 1885-1898 (2004). DOI: https://doi.org/10.1016/j.actamat.2003.12.027
- [22] E. Hosseini, M. Kazeminezhad, Comput. Mater. Sci. 44 (3), 962-967 (2009). DOI: https://doi.org/10.1016/j.commatsci.2008.07.002
- [23] C.F. Gu, L.S. Tóth, C.H.J. Davies, Scr. Mater. 65 (2), 167-170 (2011). DOI: https://doi.org/10.1016/j.scriptamat.2011.04.009
- [24] K. Kowalczyk-Gajewska, Arch. Mech. 61 (6), 475-503 (2009).
- [25] H.R. Wenk, P.V. Houtte, Rep. Prog. Phys. 67, 1367-1428 (2004). DOI: https://doi.org/10.1088/0034-4885/67/8/R02
- [26] A. Ostapovets, P. Šedá, A. Jäger, P. Lejček, Bull. Russ. Acad. Sci. Phys. 76, 76-79 (2012). DOI: https://doi.org/10.3103/S1062873812010224
- [27] R.A. Lebensohn, C.N. Tomé, Acta Metall. Mater. 41 (9), 2611-2624 (1993). DOI: https://doi.org/10.1016/0956-7151(93)90130-K
- [28] R. Kiryk, H. Petryk, Arch. Mech. 50 (2), 247-263 (1998).
- [29] K. Kowalczyk-Gajewska, S. Stupkiewicz, H. Petryk, K. Frydrych, IOP Conf. Ser.: Mater. Sci. Eng. 63, 012040 (2014). DOI: https://doi.org/10.1088/1757-899X/63/1/012040
- [30] R.J. Asaro, Adv. Appl. Mech. 23, 1-115 (1983). DOI: https://doi.org/10.1016/S0065-2156(08)70242-4
- [31] R.J. Asaro, A. Needleman, Acta Metallurgica 33 (6), 923-953 (1985). DOI: https://doi.org/10.1016/0001-6160(85)90188-9
- [32] K. Frydrych, K. Kowalczyk-Gajewska, Mater. Sci. Eng. A 658, 490-502 (2016). DOI: https://doi.org/10.1016/j.msea.2016.01.101
- [33] K. Frydrych, Eng. Trans. 69 (4), 337-352 (2021). DOI: https://doi.org/10.24423/engtrans.1320.20210908
- [34] H. Petryk, M. Kursa, Arch. Mech. 63 (3), 287-310 (2011).
- [35] W. Wajda, Ł. Madej, H. Paul, Arch. Metall. Mater. 58 (2), 493-496 (2013). DOI: https://doi.org/10.2478/amm-2013-0024
- [36] P.R. Dawson, D.E. Boyce, J.S. Park, E. Wielewski, M.P. Miller, Acta Mater. 144, 92-106 (2018). DOI: https://doi.org/10.1016/j.actamat.2017.10.032
- [37] M. Wójcik, A. Skrzat, ASTRJ 16 (5), 163-177 (2022). DOI: https://doi.org/10.12913/22998624/154025
- [38] https://fepx.info/doc/examples.html, accessed: 22.12.2022
- [39] F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Acta Mater. 58 (4), 1152-1211 (2010). DOI: https://doi.org/10.1016/j.actamat.2009.10.05
- [40] V.M. Segal, Mater. Sci. Engng. A 197, 157-164 (1995). DOI: https://doi.org/10.1016/0921-5093(95)09705-8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fa32418-7417-45dc-8414-344e8f7e199a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.