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ABSTRACT: In this paper approach parameters widely used collision avoidance systems such as the distance at
closest point of approach and time to the closest point of approach and less known and used as the distance on
course, the distance abeam and any distance and the times intervals to their occurrences are derived, analyzed
and graphically interpreted in the combined coordinate system for position and motion. They can be used in
collision avoidance systems and for reversed purposes - manoeuvring to required approach parameters,

intentional approaches and naval tactical manoeuvres.

1 INTRODUCTION

After the introduction of marine navigation radars for
collision avoidance purposes, approach parameters of
tracked objects were determined in a graphical
manner by manual radar plots. At the beginning,
analytical formulae for determination of motion and
approach parameters and collision avoidance
manoeuvres were derived in a polar coordinate
system, natural for radar plots, with input values such
as distances, bearings, velocities, courses and their
changes.

The introduction of computer controlled
Automatic Radar Plotting Aids (ARPAs) has created
the need for algorithms for determination of motion
and approach parameters but calculations in such
systems are system-specific because they use mainly a
Cartesian coordinate system. This is caused by:

— simple equations of motion in a system of

Cartesian coordinates,

— simple estimation algorithms for motion
parameters in digital tracking filters (because for
objects travelling with constant velocities and

courses their polar position changes — radial and
angular velocities - are not constant and in
Cartesian coordinates are constant),

— reduction of number of trigonometric and circular
functions which, when wused in numerical
calculations, are connected with longer and less
accurate calculations.

Publication of such algorithms is very rare -
Jaksevi¢ (1967) and Lord (1968) are two of the very
few that have been published. Only the second has
some derivations and all of them are limited to the
predicted object CPA (Closest Point of Approach)
distance and the time interval to its occurrence. These
parameters are well-established approach parameters
used in collision avoidance systems featuring ARPAs
as well as in manual radar plots.

In this paper other approach parameters such as:

— the predicted object distance on course and the
time interval to its occurrence,

— the predicted object distance abeam and the time
interval to its occurrence,

— the predicted object distance and the time interval
to its occurrence
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are presented in analytical and graphical form.

This paper is mainly a combined and shortened
version of Lenart 1999a, 1999b, 2000a, 2000b and 2010
with emphasis to graphical interpretations.

2 ASSUMPTIONS AND INPUT PARAMETERS

For the purposes of this analysis, own vessel and
extraneous objects of interest are regarded as if the
mass of each object was concentrated at a point. It will
be assumed that all moving external objects are
travelling at constant velocity and course. In the
movable plane tangential to the Earth’s surface
Cartesian coordinates system Ox, Oy (Fig. 1), with Oy
pointing North, O is the present position of own
vessel. It is also be assumed that manual plots or the
radar processing and tracking (ARPA) or AIS
(Automatic Identification System) has yielded:

— the present relative position of each object of

interest X, Y,

— the components of its true velocity Vtx, Vty and/or
— the components of its relative velocity Vrx, Vry.

N
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Figure 1. Input parameters

The relationship of own and an object’s velocities
can be described by equations

Vtx = er + Vx (1)

Vty = Vry + Vy (2)

V= Ve +Vg 3)
V= /Va + V) (4)

where Vx, Vy = own velocity components,
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Vi=Vsiny )
Vy=V cos y (6)

V= Vi+V] )

where y = own course (the angle measured clockwise
from Oy to V).

From the above

V=V +Vsiny (8)
Vi =V +V cos y )
and

Vix=Vi -V sin \ (10)
Viy=Viy -V cosy (11)

Own and an object’s motion parameters should be
either ground or sea referenced and a drift angle is
assumed to be zero.

3 COMBINED COORDINATES SYSTEM FOR
POSITION AND MOTION

A conventional PPI displays the position of each
object by plotting them in polar (r, B - distance,
bearing) or Cartesian (x, y) coordinates. If we apply a
scaling factor T to the velocity coordinates (V, y) or
(Vx, Vy) such that

r=Vr (12)
B=v (13)
x=Vxt (14)
y=Vyt (15)

then the position and velocity coordinates coupled by
time t can be plotted on a common display. On such a
display, besides own velocity vector (V, y) and
positions of objects (X, Y), vectors of theirs true (Vi,
Vi) or relative motion (Vr, Vi) can be plotted in a
coordinate system parallel shifted to the point (X, Y).
This corresponds to equations

x=X+Virt (16)
y=Y+Vyn1 (17)
or

x=X+VxT (18)



y= Y+ Vit (19)

In a graphical interpretation the above equations
mean that vectors of velocity are plotted in this
coordinates system of position as T — minutes vectors
of predicted motion drawn from the present positions
of own vessel and objects. The full area of (Vx, Vy) or
(V, y) is the area our manoeuvres which can be
limited by our maximum velocity Vmax — the circle
centred at (0, 0) and having radius Vmax.

4 EQUATIONS OF RELATIVE MOTION
The relative position of an object, at time t, is given by

X(t) =X+ Vix t (20)

Y(t)=Y+Viy t 1)

If D(t) is the distance to an object at time t, then

D(t) = /X*()+ Y (1) =

- \/R2 + V2 +2(XV, + YVt

(22)
or after squaring both sides and rearrangements
2.2 2 200y _
Vit” +2(XVi, + YV )t +R* =D (t) =0 23)
where
R = /\/Xz + Y2 (24)

5 EQUATION OF TRUE MOTION

A substitution of Equations (10) and (11) to equation
of relative motion (23) and rearranging yields
equation of true motion

(V2V2) To2-2[ (X+VTo)siny+(Y+Vy Tp)cosy]VTo

+2(XVitY Vi) To+R2-D2= 0 (25)

6 CPA DISTANCE AND TIME

6.1 Equations for Dcra and Tcra

In equation of relative motion (23) the distance

reaches a minimum Dcra (Lenart 1983)

XV, =YV,
V

T

CPA —

(26)

and time to achieve CPA - Tcra

XV, + YV,

CPA — — 2
Vr

(27)

6.2 Derivation of Equation V =f(y, Dcra)

From Equations (26) and (4), by squaring both sides
and rearranging terms, we obtain a quadratic
equation in Vry

(XZ-DZCPA)Vzry-ZXYerVry+(YZ-DZCPA)Ver =0 (28)
whose solution is
Vry = Apcra Vix (29)
where

XY £ DCPA‘\/ R2 B D(ZZPA
Apcpa = (30)

2 2
X" - DCPA

A substitution of Equations (10, 11) to Equation
(29) and rearranging yields

~10 10 20 30V, [kt]
7‘2 é A‘L l é x [n.m.]
Teps=0
Figure 2. Lines Dcra=const. and circles Tcra=const.
1=0.2 h, X=Y=5 n.m., Vu=-10 kt, Vy=10 kt
B
V= DCPA (31)
Apcpa SINY —COS Y
where
Bocra = Apcra Vix - Viy (32)

and real solutions exist if (Equation (30))
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R >Depy (33)

Equation (31) gives the velocity V which own
vessel must adopt to achieve the required CPA
distance Dcra (in respect to the selected object) for
various assumed own courses \y, but we should
search for solution

V=0 (34)
and V, y for which
Tepa 20 (35)

6.3 Graphical interpretation

A graphical interpretation of Apcra and Bpcra can be
obtained on a plotting in Cartesian coordinates of
own velocity (Vx, Vy) by substituting Equations (5)
and (6) to Equation (31)
Vy = Abpcra Vx - Boera (36)

In these coordinates all points corresponding to a
given value of Dcra will lie on two straight lines
having slopes Apcea+ and Apcea-(values Apcea with +
or — in the numerator of Equation (30) respectively),
intersecting in the point (Vi, Vi) and cutting the Vy
axis at -Bocear and -Bocea- (the values of Bocra

obtained on putting respective values of Abcea in
Equation (32)).

In the combined coordinate system (Equations (12-
15)) Equations (32) and (36) transform respectively to

B T
r= DCPA (37)
Apcpa SINY —COS Y
and
y = Apcra X - Bocra T (38)

Figure 2 illustrates a family of lines (36) or (37) and
(38) for various Dcra for an exemplary object.

6.4 Collision Threat Parameters Area

We can use Equations (36) or (38) and (30), (32) with a
substitution of

Dcra=Ds (39)
where Ds = assumed safe value of Dcra (thresholds set
by the system’s operator), to draw lines V(Dcpa=Ds).
For that part of the area bounded by these lines and
within which Tcea>0, own vessel’s motion parameters
are leading to a threat of collision. This region is
named the Collision Threat Parameters Area — CTPA
(Lenart 1983) a new radar display and plot technique.
The size and the position of CTPA are independent of
own vessel’s motion parameters. If we also plot own
vessel’s velocity vector (actual or simulated) and this
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terminates inside the CTPA then there is a collision
threat. Any manoeuvre, by change of course and/or
velocity, which deflects the end of this vector out of
the CTPA is a possible means of avoiding the given
threat.

6.5 Derivation of equation V = f(y, Tcra)

A substitution of Equations (4), (10) and (11) to
Equation (27) gives a quadratic equation in V

TeraV2-[(X+2VTera)sing+(Y+2ViyTcra)cosy|V

H(VTeratXVatYViy) = 0 (40)
whose solution is
V = Aqcpa SINY + Byep, cOSY
- 5 (41)
t \/(ATCPA siny + Beps cos W)™ —Coepy
where
X
A vV, + (42)
TCPA tx 2TCPA
Y
B vV, + (43)
TCPA ty 2TCPA
XV, +YV
2 t t
Crepa = Vi = * (44)
TCPA
Real solutions exist if
(Atcpa SIN Y+ Brcpy COS y) 2 Crepa (45)

Equation (41) can yield up to two velocities V =0
which own vessel must adopt to achieve the required
time to CPA - Tcra (in respect to the selected object)
for various assumed own courses .

6.6  Graphical interpretation

A graphical interpretation of solutions given by
Equation (41) can be obtained in Cartesian
coordinates of own velocity (Vx, Vy) substituting
Equations (5-7) to Equation (41)

2
R
(Ve —Arcpa)’ + (Vy —=Brcpa )’ = (j (46)
2Tepa

The above equation reveals that the locus of
points, for which Tcra is a constant, is a circle centred
at (Atcea, Brepa) and having radius R /(2Tp, )‘ .

Figure 2 illustrates a family of circles for various
values of Tcea>0 for an exemplary object.




Transformation of Equation (46) to (x, y)
coordinates (Equations (14-15)) yields
R 2
2 2 T
(X = Agcpa®)” +(¥ = Brepa®) :L j (47)
2Tcpa

6.7 Derivation of equation y= g(V, Dcpa)

If we search for own course y which will lead to the
required CPA distance Dcra at an assumed own speed
V then we can get an inverse function y=g(V, Dcra) to
the function V=f(y, Dcra) by a substitution to
Equation (31) the trigonometric identities

2tan A4

siny =
1+ tan® v
2

(48)

l—tan2E

cosy =
1+tan2E
2

(49)

which will result in equation

(V—BDCPA)tan2 %%— 2A 0V tan% (50)

_(V+BDCPA) =0

and its solution

tang _ ApcpaVE \/(AZDCPA + 1)V2 - BzDCPA
Bpepa =V

(1)

Real solutions exist if

2
V2> Bbcra

> (52)
A2DCPA +1

and R>D,,

and Equation (51) can give up to four own courses vy,
which will lead to the required CPA distance Dcra at
an assumed own speed V if they additionally fulfil
Condition (35). Graphically these solutions are the
intersection points of lines V(Dcra=const.) with a circle
V=const. (a circle centred at (0, 0) and having radius
V).

7 DISTANCE AND TIME ON COURSE

7.1 Equations for Dc and Toc

The predicted object distance on course Dc (Figure 1)
and the time interval to its occurrence Tb. are
sometimes used as additional criteria for collision
threat. They are used in some ARPAs for calculation
of BCR - the bow crossing range and BCT - the bow

crossing time. These parameters
equations (Lenart 1999b)

are given by

XV, -YV,
Dc: : ry X
Viysiny =V, cosy (53)
Xcosy —Ysiny
o=y Siny-v,
ysiny —V_ cosy (54)

D0 means that an object will cross the course of
own vessel ahead and D«<0 that an object will cross
the course astern. Interpretation of the sign of Toc is
similar to Tocea — for To<0 Dchas taken place in the
past.

7.2 Derivation of equation V = f(y, Dc)

A substitution of Equations (10) and (11) to Equation
(53) and rearranging yields

ALV, -V,
Dc Y tx t
V= : z (55)
Ap,siny —cosy
where
Y -D_cosy
De = v N . (56)
X —-D._sin
c \4
N
y Vi D=-10 -R -3 -2
[nm.] ] [kt] .
Tpe=|.5 .25 2
(T
1
101 50 2
n.m.
8/ 40
! Tpe=0
A
6+ 30,
.
Too=doo | / 1
/ 1
2+ 10
0 :h\Ri
-10 10 20 30V, [kt]
o 2 4 6 x[nm]
—-2+-10
D=-10

Figure 3. Lines De=const. and Tp=const.
1=0.2 h, X=Y=5 n.m., Vu=-10 kt, Vy=10 kt
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Equation (57) is similar to Equation (31) with (32)
but Ap. is dependent on y. Equation (57) gives the
speed V, which own vessel must adopt to achieve the
required distance on course Dec (in respect to the
selected object) for various assumed own courses ,
but we should search for solution

V>0 (57)
and y for which
Tp. 20 (58)

Condition (58) means that the approach on course
is at present or will be in the future, not in the past.

7.3 Derivation of Equation y= g(Tbc)

Substituting Equations (10) and (11) to Equation (54)
results in Equation

T. = —Ysiny+Xcosy (59)

Dc — .
Vi siny =V, cosy

This equation reveals that the time to distance on
course Tpc is independent of own velocity V.
Therefore from the above

X+ V,Tph,

(60)
Y+ V, Th,

tany =

and Equation (60) gives own course y, which will
lead to the required time to distance on course Toe.

7.4 Graphical interpretation

A graphical interpretation of solutions given by
Equation (60) can be obtained in Cartesian
coordinates of own velocity (Vx, Vy)

v = X+ Vo,

= X (61)
YUY+ Vi The

and the locus of points, for which Tbo. is a constant, is
a straight line crossing the origin of coordinates.
Figure 3 illustrates a family of lines (53) for various
required Dc and a family of straight lines (61) for
various values of Tp>0 for an exemplary object.

7.5 Sign of Dc

It can proved (Lenart 2010) that if for a given own
course y exists own velocity V(Dcra=0)>0 with
Tocra(Dera=0)>0 then for V>V(Dcra=0) an object will
pass astern (Dc<0), and for V<V(Dcra=0) an object will
pass ahead (Dc>0). This sign of D. is illustrated in
Figure 2.

526

8 DISTANCE AND TIME ABEAM

8.1 Equations for Da and Toa

The predicted object distance abeam Daband the time
interval to its occurrence Tpa are sometimes used
additional criteria for collision threat. These
parameters are given by equations (Lenart 2000a)

XV, -YV,
® TV siny + V,, cosy 62)
T —_ Xsiny +Y cosy
PPV sing + V,, cosy (63)

Da>0 means that an object will be abeam on the
starboard side of own vessel, and Dav<0 that an object
will be abeam on the port side. Interpretation of the
sign Toab is similar to Tocra — for Toab<0 Dab has taken
place in the past.

8.2 Derivation of equation V = f(y, Da)

Substituting Equations (10) and (11) to Equation (62)
and rearranging yields

Apa Vi =V,
V= Dal? X ty (64)
Ap,, SIny —cosy
where
_ Y+D, siny (65)

P® X —D,, cosy

Equation (64) is similar to Equation (31) with (32)
but Apab is dependent on y. Equation (64) gives the
velocity V, which own vessel must adopt to achieve
the required distance abeam Dab (in respect to the
selected object) for various assumed own courses ,
but we should search for solution

V=0 (66)
and V, y for which
T, =0 (67)

Condition (67) means that the approach abeam is
at present or will be in the future, not in the past.

8.3 Derivation of equation V = f(y, Tow)

Substituting Equations (10) and (11) to Equation (63)
results in Equation

Xsiny +Y cosy

T., =— 68
bab Vi siny +V, cosy -V ©9

hence



V= Aqpg, siny + Brpg, cosy (69)
where
X
Agpay = Ve +
Dab (70)
Y
Brpa = Viy +
Dab (71)

Equation (69) can yield the velocity V >0 which
own vessel must adopt to achieve the required time to
the distance abeam Toab (in respect to the selected
object) for various assumed own courses .

8.4 Graphical interpretation

A graphical interpretation of solutions given by
Equation (69) can be obtained in Cartesian
coordinates of own velocity (Vx, Vy) substituting
Equations (5) through (7) to Equation (69)

(Vx - % ATDab )2 + (Vy - %BTDab )2
= (% Aty )2 + (% Bipa )2

The above equation reveals that the locus of
points, for which Toab is a constant, is a circle centred
at G4mw3Bmww)  and crossing the origin of a
coordinates system.

(72)

Figure 4 illustrates a family of lines (64) for various
required Dab and a family of circles (72) for various
values of Toa>0 for an exemplary object.

y YV Du=3 2 1
[kt]

Tpab=0
Der=R—
\
D= | 10
10
|
7} 4 6 x [n.m.]

Figure 4. Lines Dab=const. and circles Toa=const.
1=0.2 h, X=Y=5 n.m., Vu=-10 kt, Vy=10 kt

8.5 Sign of Du

It can be proved (Lenart 2010) that the sign of formula
under the modulus in Equation (26) is the sign
opposite to the sign of the distance abeam Das, if own
course is equal to bearing to an object (when Tpax>0
and Tcra>0).

9 DISTANCE AND TIME

9.1 Derivation of equation To=f(Vr, D)

Solving a quadratic equation of relative motion in Tp
(23) we obtain (for t=Tb)

LTV, +YV, )£ /(DV,)! - (XV,, - YV,)?

) v 73)
or (Equations (26) and (27))

Tp =Tepa £ Dz\_[rDéPA (74)
and real solutions exist if

D> Depy (75)

Equation (73) or (74) gives time Tpb to achieve the
distance D to the selected object.

9.2 Time to safe distance

Since in Equation (73) or (74) D can be any distance,
we can substitute D=Ds (as in Section 6.5) and this
time can be named the time to safe distance and have
been proposed analyzed and applied to detection of
dangerous objects and to display the possible evasive
manoeuvres (accurate Predicted Areas of Danger
instead of their geometrical approximations) in Lenart
(2015).

9.3 Derivation of equation V =f(y, D, Tp)

Solving a quadratic equation in V (25) we obtain

V=A,siny+B,;,cosy

- 3 (76)
x \/(AVTd siny + By, cosy)” —Cypy
where
X
Ay =V + (77)
T,
Y
Byrg =V, + (78)
T,
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2(XV,+YV,) R?-D’
+

Cyry =V + (79)
VTd t TD Tlg
Real solutions exist if
. 2
(AyraSiny+Byrq cosy)” = Cypy (80)

Equation (76) can yield up to two own velocities
V 2> 0, which own vessel must adopt to achieve the
required distance D at the required time TD (in
respect to the selected object) for various assumed
own courses .

9.4 Graphical interpretation

A graphical interpretation of solutions given by
Equation (76) can be obtained in Cartesian
coordinates of own velocity (Vx, Vy) substituting
Equations (5-7, 24) to Equation (25)

2
(Vx —Avrg )2 + (Vy - BVTd)2 = (D]

81
T, (81)

The above equation reveals that the locus of points
for which D and Tb are constants is a circle centred at
(Avrd, Bvra) and having radius |D / TD| .

Figure 5 illustrates a family of circles (81) for
various required D and To for an exemplary object as
well as, for comparison, circles V(Tcpa=const.)
(Equation (47)) and the line V(Dcra=0) (Equation (36)).

N

y %

[n.m.]

-10 10 20 30V, [kt]

x [n.m.]

Figure 5. Circles D, To=const.
1=0.2 h, X=Y=5 n.m., Vix= -10 kt, Vy=10 kt
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It should be noted from Equations (73) and (74)
that there can exist two times of approach at distance
D: shorter - approach at the point A (Figure. 1) and
longer - approach at the point B. If only the earlier
(the first) approach is interesting for us, then, for this
time condition Tcea>Tp for selected own motion
parameters V, y should be fulfilled. This criterion
fulfil points of circle V(D, Tp), which lie inside a circle
V(Tcpa=const.) for the same time (marked in Figure 5
by the thicker line).

Graphically solutions of Equation (76) are the
intersection points of the circle V=f(D, Tp) with a line
of an assumed own course .

10 TIME TO MANOEUVRE

It has to be emphasized that the manoeuvres
calculated in the previous Sections are kinematic and
should be undertaken immediately. If we require to
have the time lapse At for calculations, for the
decision to initiate a manoeuvre and for the execution
of the calculated manoeuvre then (X, Y) in the
previous equations should be replaced by (Xa, Yat)
respectively, given by equations

Xat = X + Vix At (82)

Ya=Y + Vy At (83)

11 CONCLUSIONS

Formulae for such approach parameters as the
predicted object CPA distance, the distance on course,
the distance abeam, any distance and the times
intervals to their occurrences in a Cartesian
coordinates system have been derived, analyzed and
graphically interpreted in the combined coordinate
system for position and motion.

More than 80 directly applicable formulae for
collision avoidance and quite reversed purposes -
manoeuvring to required approach parameters,
intentional approaches and naval tactical manoeuvres
have been provided — almost all of them are derived
from one basic equation of relative motion.

The introduction such auxiliary parameters as the
distance on course and the distance abeam, apart
from the main approach parameter - the distance to
CPA, makes possible:

— a resignation from assumption (Section 2) that the
mass of each object was concentrated at a point
which can have significance when distances are
comparable to objects” dimensions,

— more complete analysis of the main parameters
(e.g. conclusions in Sections 7.5, 8.5 and 9.2).

Interpretation and plotting of derived formulae in
the combined coordinate system of position and
motion enable their applications as well in computer
controlled radar systems as in manual radar plots —
some of them are very simple in manual plots as it
has been shown in Lenart (1983).



It must be emphasized that owing to the fact that
in the derived formulae trigonometric and inverse
trigonometric functions of extraneous objects’
parameters are not used, computer calculations can be
faster and more accurate.
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