PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of constitutive models of arterial layers with distributed collagen fibre orientations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several constitutive models have been proposed for description of mechanical behaviour of soft tissues containing collagen fibres. The model with aligned fibres is modified in this paper to take the dispersion of fibre orientations into account through angular integration and it is compared with the model that is defined through generalized structure tensor. The paper is focused on the effect of fibre dispersion on the resulting stress-strain behaviour predicted by both analyzed models. Analytical calculations are used for the comparison of the mechanical behaviour under a specific biaxial tension mode. Both the models have been implemented into commercial finite element code ANSYS via user subroutines and used for numerical simulation resulting in a non-homogeneous stress field.The effects of the fibre dispersion predicted by both of the compared models differ significantly - e.g. the resulting stress difference between both models is lower than 10% only in case of extremely small dispersion of collagen fibres orientation (k < 0.01 to 0.03)). These results are consistent with other literature reference. The applicability of the model defined through the generalized structure tensor is discussed.
Rocznik
Strony
47--58
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic
autor
  • Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic
Bibliografia
  • [1] VERONDA D.R., WESTMANN R.A., Mechanical characterization of skin – finite deformations, Journal of Biomechanics, 1970, 3, 111–124.
  • [2] DEMIRAY H., A note on the elasticity of soft biological tissues, Journal of Biomechanics, 1972, 5, 309–311, DOI: 10.1016/0021-9290(72)900047-4.
  • [3] DELFINO A., STERGIOPULOS N., MOORE J.E., MEISTER J.J., Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation, J. Biomech., 1997, 30, 777–786, DOI: 10.1016/S0021-9290(97)00025-0.
  • [4] CHUONG C.J., FUNG Y.C., Three-dimensional stress distribution in arteries, J. Biomech. Eng., 1983, 105, 268–274.
  • [5] SUN W., SACKS M., Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues, Biomechanics and Modeling in Mechanobiology, 2005, 4, 190–199, DOI: 10.1007/s10237-005-0075-x.
  • [6] CHOI H.S., VITO R.P., Two-dimensional stress–strain relationship for canine pericardium, Journal of Biomechanical Engineering, 1990, 112(2), 153–159.
  • [7] SACKS M.S., CHUONG C.J., Orthotropic mechanical properties of chemically treated bovine pericardium, Annals of Biomedical Engineering, 1998, 26(5), 892–902.
  • [8] VANDE GEEST J.P., SACKS M.S., VORP D.A., The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta, Journal of Biomechanics, 2006, 39, 1324–1334, DOI: 10.1016/j.jbiomech.2005.03.003.
  • [9] Humphrey J.D., Yin F.C., A new constitutive formulation for characterizing the mechanical behavior of soft tissues, Biophysical Journal, 1987, 52(4), 563–570.
  • [10] CANHAM P.B., FINLAY H.M., DIXON J.G., BOUGHNER D.R., CHEN A., Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure, Cardiovasc. Res., 1989, 23, 973–982.
  • [11] SMITH J.F.H., CANHAM P.B., STARKEY J., Orientation of collagen in the tunica adventitia of the human cerebral artery measured with polarized light and the universal stage, Journal of Ultrastructure Research, 1981, 77(2), 133–145.
  • [12] FINLAY H.M., MCCULLOUGH L., CANHAM P.B., Threedimensional collagen organization of human brain arteries at different transmural pressures, J. Vasc. Res., 1995, 32, 301–312.
  • [13] SACKS M.S., Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues, J. Biomech. Eng., 2003, 125, 280–287, DOI: 10.1115/1.1544508.
  • [14] SCHRIEFL A.J., ZEINDLINGER G., PIERCE D.M., REGITNIG P., HOLZAPFEL G.A., Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries, J. R. Soc. Interface, 2011, DOI: 10.1098/rsif.2011.0727.
  • [15] GASSER T.C., GALLINETTI S., XING X., FORSELL C., SWEDENBORG J., ROY J., Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics, Acta Biomater., 2012, 8, 3091–3103.
  • [16] HOLZAPFEL G.A., GASSER T.C., OGDEN R.W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, Journal of Elasticity, 2000, 61, 1–48, DOI: 10.1023/A:1010835316564.
  • [17] GASSER T.C., OGDEN R.W., HOLZAPFEL G.A., Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, 2006, 3, 15–35, DOI: 10.1098/rsif.2005.0073.
  • [18] WUYTS F.L., VANHUYSE V.J., LANGEWOUTERS G.J., DECRAEMER W.F., RAMAN E.R., BUYLE S., Elastic properties of human aortas in relation to age and atherosclerosis: a structural model, Phys. Med. Biol., 1995, 40, 1577–1597, DOI: 10.1088/0031-9155/40/10/002.
  • [19] HURSCHLER C., LOITZ-RAMAGE B., VANDERBY Jr. R., A structurally based stress-stretch relationship for tendon and ligament, J. Biomech. Eng., 1997, 119, 392–399.
  • [20] ZULLIGER M.A., FRIDEZ P., HAYASHI K., STERGIOPULOS N., A strain energy function for arteries accounting for wall composition and structure, J. Biomech., 2004, 37, 989–1000, DOI: 10.1016/j.jbiomech.2003.11.026.
  • [21] BILLIAR K.L., SACKS M.S., Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II – A structural constitutive model, J. Biomech. Eng., 2000, 122, 327–335, DOI: 10.1115/1.1287158.
  • [22] LANIR Y., Constitutive equations for fibrous connective tissues, J. Biomech., 1983, 16, 1–12, DOI: 10.1016/0021-9290(83)90041-6.
  • [23] ELSHEIKH A., KASSEM W., JONES S.W., Strain-rate sensitivity of porcine and ovine corneas, Acta Bioeng. Biomech., 2011, 13(2), 25–36.
  • [24] PANDOLFI A., HOLZAPFEL G.A., Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fiber orientation, J. Biomech. Eng., 2008, 130, 061006.
  • [25] ANNAIDH A., BRUYERE K., DESTRADE M., GILCHRIST M.D., MAURINI C., OTTENIO M., SACCOMANDI G., Automated estimation of collagen fibre dispersion in the dermis andits contribution to the anisotropic behaviour of skin, Ann. Biomed. Eng., 2012, 40(8), 1666–1678, DOI: 10.1007/ s10439-012-0542-3.
  • [26] CORTES D.H., LAKE S.P., KADLOWEC J.A., SOSLOWSKY L.J., ELLIOT D.M., Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modelling approaches, Biomech. Model. Mechanobiol., 2010, 9, 651–658, DOI: 10.1007/s10237-010-0194-x.
  • [27] LOKSHIN O., LANIR Y., Micro and macro rheology of planar tissues, Biomaterials, 1983, 30, 3118–3127, DOI: 10.1016/ j.biomaterials.2009.02.039.
  • [28] HOLZAPFEL G.A., Collagen in arterial walls: Biomechanical aspects, [in:] Fratzl P (ed.) Collagen, 2008, Springer Science +Business Media, 285–324.
  • [29] LEBEDEV V.I., Quadratures on a sphere, Zh. Vychisl. Mat. Mat. Fiz., 1976, 16(2), 293–306, DOI: 10.1016/0041-5553(76)90100-2.
  • [30] SKACEL P., BURSA J., Numerical implementation of constitutive model for arterial layers with distributed collagen fibre orientations, Computer Methods in Biomechanics and Biomedical Engineering, 2013, DOI: 10.1080/ 10255842.2013.847928.
  • [31] FEDERICO S., HERZOG W., Towards an analytical model of soft biological tissues, J. Biomech., 2008, 41, 3309–3313, DOI: 10.1016/j.jbiomech.2008.05.039.
  • [32] SKACEL P., BURSA J., Material parameter identification of arterial wall layers from homogenized stress-strain data, Computer Methods in Biomechanics and Biomedical Engineering, 2010, 14(01), 33–41, DOI: 10.1080/ 10255842.2010.493516.
  • [33] HOLLANDER Y., DURBAN D., LU X., KASSAB G.S., LANIR Y., Experimentally validated microstructural 3D constitutive model of coronary arterial media, J. Biomech. Eng., 2011, 133, 031007-1–031007-14.
  • [34] HOLLANDER Y., DURBAN D., LU X., KASSAB G.S., LANIR Y., Constitutive modeling of coronary arterial media – comparison of three model classes, J. Biomech. Eng., 2011, 133, 061008-1–061008-12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f9ad4aa-8701-44b8-ad08-dbbe96080cf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.