PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the application of cold energy of largescale LNG-powered container ships to refrigerated containers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the aim of considering the problem of excess fuel cold energy and excessive power consumption of refrigerated containers on large LNG-powered container ships, a new utilisation method using LNG-fuelled cold energy to cool refrigerated containers in cargo holds is proposed in this study, and the main structure of the cold storage in the method is modelled in three dimensions. Then, combined with the different conditions, 15 different combination schemes of high temperature cold storage and low temperature cold storage are designed to utilise the cold energy of LNG fuel, the exergy efficiency and cold energy utilisation rate calculation model of the system is established. The simulation tool ‘Aspen HYSYS’ is used to simulate and calculate the exergy efficiency and cold energy utilisation rate of the system under 15 combinations, verifying the feasibility of the scheme. According to the characteristics of such a ship’s cross-seasonal navigation routes and the number of refrigerated containers loaded in different ports, the combination schemes of the number of low-temperature cold storage and high-temperature cold storage are selected. Thus, the average exergy efficiency and cold energy utilisation rate of the whole line is obtained, which proves that LNG-powered container ships could effectively utilise the cold energy of LNG. By calculating the total electric energy consumed by refrigerated containers on the whole sailing route, before and after the adoption of the LNG cold energy method, it is found that the adoption of this new method can promote the realisation of energy saving and emission reduction of ships.
Rocznik
Tom
Strony
107--121
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061 Qingdao, China
  • College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061 Qingdao, China
autor
autor
  • College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061 Qingdao, China
  • College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061 Qingdao, China
  • School of Aerospace Engineering, Tsinghua University, Beijing, 100084 Beijing, China
Bibliografia
  • 1. X. Gu, G. Jiang, Z. Guo, and S. Ding, ‘Design and Experiment of Low-Pressure Gas Supply System for Dual Fuel Engine’, Polish Marit. Res., vol. 27, no. 2, 2020, doi: 10.2478/pomr-2020-0029.
  • 2. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Application of Thermo-chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units’, Polish Marit. Res., vol. 26, no. 3, 2019, doi: 10.2478/pomr-2019-0059.
  • 3. S. Serbin, B. Diasamidze, and M. Dzida, ‘Investigations of the working process in a dual-fuel low-emission combustion chamber for an fpso gas turbine engine’, Polish Marit. Res., vol. 27, no. 3, 2020, doi: 10.2478/pomr-2020-0050.
  • 4. T.C. Van, J. Ramirez, T. Rainey, et al. ‘Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions’, Transportation Research Part D, vol. 70, 2019, doi: 10.1016/j.trd.2019.04.001.
  • 5. L.P Perera, and B. Mo, ‘Emission Control Based Energy Efficiency Measures in Ship Operations’, Applied Ocean Research, vol. 60, 2016, doi: 10.1016/j.apor.2016.08.006.
  • 6. H.P. Nguyen, A.T. Hoang, S. Nizetic, et al. ‘The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review’, International Transactions on Electrical Energy Systems, 2020, doi: 10.1002/2050-7038.12580.
  • 7. N.R. Sharma, D. Dimitrios, A.I. Ler, et al. ‘LNG a clean fuel the underlying potential to improve thermal efficiency’, Journal of Marine Engineering & Technology, 2020, doi: 10.1080/20464177.2020.1827491.
  • 8. I. Mallidis, S. Despoudi, R. Dekker, et al. ‘The impact of sulphur limit fuel regulations on maritime supply chain network design’, Annals of Operations Research, vol. 294, no. 8, 2018, doi: 10.1007/s10479-018-2999-4.
  • 9. L.B. Reinhardt, D. Pisinger, M.M. Sigurd, et al. ‘Speed optimizations for liner networks with business constraint’, European Journal of Operational Research, vol. 285, no. 3, 2020, doi: 10.1016/j.ejor.2020.02.043.
  • 10. Eun, Soo, and Jeong, ‘Optimization of power generating thermoelectric modules utilizing LNG cold energy’, Cryogenics, vol. 88, 2017, doi: 10.1016/j.cryogenics.2017.10.005.
  • 11. O. Schinas, and M. Butler, ‘Feasibility and commercial considerations of LNG-fueled ships’, Ocean Engineering, vol. 122, 2016, doi: 10.1016/j.oceaneng.2016.04.031.
  • 12. R. Zhao et al., ‘A Numerical and Experimental Study of Marine Hydrogen-Natural Gas-Diesel Tri-Fuel Engines’, Polish Marit. Res., vol. 27, no. 4, 2020, doi: 10.2478/pomr-2020-0068.
  • 13. M. Badami, J.C. Bruno, A. Coronas, and G. Fambri, ‘Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification’, Energy, vol. 159, 2018, doi: 10.1016/j.energy.2018.06.10.
  • 14. B.B. Kanbur, L. Xiang, S. Dubey, F.H. Choo, and F. Duan, ‘Cold utilisation systems of LNG: a review’, Renewable and Sustainable Energy Reviews, vol. 79, 2017, doi: 10.1016/j.rser.2017.05.161.
  • 15. J. Dong, S. Huang, S. Li, Y. Yao, Y. Jiang, ‘LNG cold energy used in cold storage refrigeration performance simulation research’, Journal of Harbin Institute of Technology, vol. 49, no. 2, 2017.
  • 16. T. Banaszkiewicz, ‘The Possible Coupling of LNG Regasification Process with the TSA Method of Oxygen Separation from Atmospheric Air’, Entropy, vol. 23, no. 3, 2021, doi: 10.3390/e23030350.
  • 17. W. Lin, M. Huang, H. He, et al., ‘A transcritical CO2 Rankine Cycle with LNG cold energy utilisation and liquefaction of CO2 in gas turbine exhaust’, Journal of Energy Resources Technology, vol. 131, no. 4, 2009, doi: 10.1115/1.4000176.
  • 18. T. Jin, J.J. Hu, G.B. Chen, and K. Tang, ‘Novel air separation unit cooled by liquefied natural gas cold energy and its performance analysis’, Journal of Zhejiang University, vol. 41, no. 5, 2007.
  • 19. E. Baldasso, M.E. Mondejar, S. Mazzoni, et al., ‘Potential of liquefied natural gas cold energy recovery on board ships’, Journal of Cleaner Production, vol. 271, 2020, doi: 10.1016/j.jclepro.2020.122519.
  • 20. H.L. Sang, and K. Park, ‘Conceptual design and economic analysis of a novel cogeneration desalination proces using LNG based on clathrate hydrate’, Desalination, vol. 498, 2021, doi: 10.1016/j.desal.2020.114703.
  • 21. P. Babu, A. Nambiar, R.C. Zheng, et al., ‘Hydrate-based desalination (HyDesal) process employing a novel prototype design’, Chemical Engineering Science, vol. 218, 2020, doi: 10.1016/j.ces.2020.115563.
  • 22. J. Sun, K. Han, C. Xie, et al., ‘Liquid-solid fluidized bed seawater ice desalination based on LNG cold energy’. Modern Chemical Industry, vol. 40, no. 7, 2020, doi: 10.16606/j.cnki.issn0253-4320.2020.07.042.
  • 23. I.M. Mujtaba, W. Cao, and C. Beggs, ‘Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy’, Desalination, vol. 355, 2015, doi: 10.1016/j.desal.2014.09.034.
  • 24. E.G. Cravalho, J.J. McGrath, and W.M. Toscano, ‘Thermodynamic analysis of the regasification of LNG for the desalination of sea water’, Cryogenics, vol. 17, no. 3, 1977, doi: 10.1016/0011-2275(77)90272-7.
  • 25. T. He, R. Zheng, J. Zheng, Y. Ju, et al., ‘LNG cold Energy utilisation: prospects and challenges’, Energy, vol. 170, 2019, doi: 10.1016/j.energy.2018.12.170.
  • 26. N. Yamanouchi, and H. Nagasawa, ‘Using LNG cold for air separation’, Chemical Engineering Progress, vol. 75, no. 7, 1979.
  • 27. Y. Wu, Y. Xiang, L. Cai, et al., ‘Optimization of a novel cryogenic air separation process based on cold Energy recovery of LNG with exergoeconomic analysis’, Journal of Cleaner Production, vol. 275, 2020, doi: 10.1016/j.jclepro.2020.123027.
  • 28. M. Mehrpooya, B. Golestani, and S. Mousavian, ‘Novel cryogenic argon recovery from the air separation unit integrated with LNG regasification and CO2 transcritical power cycle’, Sustainable Energy Technologies and Assessments, vol. 40, no. 3, 2020, doi: 10.1016/j.seta.2020.100767.
  • 29. R. Zhang, C. Wu, W. Song, et al., ‘Energy integration of LNG light hydrocarbon recovery and air separation: Process design and technic-economic analysis’, Energy, vol. 207, 2020, doi: 10.1016/j.energy.2020.118328.
  • 30. Z. Gu, ‘The simulation and operation optimization of the C_2~+ recovery process from LNG’, Petrochemical Industry Application, vol. 37, no. 4, 2018.
  • 31. T. Gao, W. Lin, and A. Gu, ‘Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilised’, Energy Conversion & Management, vol. 52, no. 6, 2011, doi: 10.1016/j.enconman.2010.12.040.
  • 32. T. Yamamoto, T. Furuhata, N. Arai, and K. Mori, ‘Design and testing of the Organic Rankine Cycle’, Energy, vol. 26, no. 3, 2001.
  • 33. N.B. Desai and S. Bandyopadhyay, ‘Process integration of organic Rankine cycle’, Energy, vol. 34, no. 10, 2009, doi: 10.1016/j.energy.2009.04.037.
  • 34. J. Koo, S.R. Oh, Y.U. Choi, et al., ‘Optimization of an Organic Rankine Cycle System for an LNG-Powered Ship’, Energies, doi: 10.3390/en12101933.
  • 35. Z. Tian, W. Zeng, B. Gu, et al., ‘Energy, exergy, and economic (3E) analysis of an organic Rankine cycle using zeotropic mixtures based on marine engine waste heat and LNG cold energy’, Energy Conversion and Management, vol. 228, 2020, doi: 10.1016/j.enconman.2020.113657.
  • 36. X. Sun, S. Yao, J. Xu, et al., ‘Design and Optimization of a Full-Generation System for Marine LNG Cold Energy Cascade Utilisation’, Journal of Thermal Science, vol. 29, no. 3, 2020, doi: 10.1007/s11630-019-1161-1.
  • 37. L. Xu, and G. Lin, ‘LNG-FSRU new LNG cold energy power generation optimization plan’, Natural gas chemical industry (C1 chemistry and chemical engineering), vol. 45, no. 5, 2020.
  • 38. L. Zhao, J. Zhang, X. Wang, et al., ‘Dynamic exergy analysis of a novel LNG cold energy utilisation system combined with cold, heat and power’, Energy, vol. 212, 2020, doi: 10.1016/j.energy.2020.118649.
  • 39. I.A. Fernández, M.R. Gómez, J.R. Gómez, and L.M. López- González, ‘Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System’, Polish Mari Marit. Res., vol. 27, no. 1, 2020, doi: 10.2478/pomr-2020-0009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f909af5-7c22-4466-a15e-cbae4bb4b7f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.