PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermo-physical properties, heat transfer characteristics and performance of nano-enhanced refrigerants : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To boost the efficacy of a refrigeration system, researchers have imported nanoparticles into refrigerants in recent years. This paper comprehensively reviewed the properties, heat transfer performance, and system performance of nano-added refrigerants in recent years. This article likewise assists with recognizing the gap in past research works and explores the possibilities for additional work. Refrigerant R134a charged with the nanoparticles TiO2 has the highest value of coefficient of performance which is 63.5% higher than that of Al2O3 nanoparticle charged R134a. Charging of the nano-refrigerants has enhanced the heat transfer performance of vapour compression refrigeration systems, particularly in the pool and nucleate boiling heat transfer. The heat transfer coefficient of R134a-based nano-refrigerant is enhanced by 42% and 30.2% with CuO and TiO2 nanoparticles respectively. The inclusions of nanomaterials, concerning their physical phenomena, influencing the vapour compression refrigeration system are confined in this paper.
Rocznik
Strony
311--322
Opis fizyczny
Bibliogr. 77 poz., rys.
Twórcy
autor
  • Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore-632 014, India
  • Faculty of Materials Science and Engineering, Technical University ˮGheorghe Asachi” of Iasi, Iasi, Romania
  • Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351, Bialystok, Poland
  • Department of Thermal Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
autor
  • Department of Thermal Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
  • Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore-632 014, India
Bibliografia
  • [1] Chunekar, A., Varshney, S., & Dixit, S. (2016). Residential Electricity Consumption in India: What do we know. Prayas (Energy Group). https://energy.prayaspune.org/our-work/research-report/residential-electricity-consumption-in-indiawhat-do-we-know [accessed 09 Jan. 2024].
  • [2] Ministry of Climate and Environment. (2021). Energy in Numbers 2021. Republic of Poland.
  • [3] Ambhore, D., Tiwari, A., Patel, U., Patil, J., & Ramachandran, M. (2020). Effect of Aluminium oxide Nano filler in Tetrafluoroethane (R-134a) Refrigerant. IOP Conference Series: Materials Science and Engineering, 810(1), 012018. doi:10.1088/1757-899X/810/1/012018
  • [4] Subhedar, D., & Ramani, B. (2016). Experimental Investigation On Thermal Conductivity And Viscosity Of Al2O3/Mono Ethylene Glycol And Water Mixture Nanofluids As A Car Radiator Coolant. Advances and Applications in Fluid Mechanics, 19(3), 575. doi: 10.17654/FM019030575
  • [5] Gugulothu, S., & Pasam, V.K. (2020). Experimental investigation to study the performance of CNT/MoS2 hybrid nanofluid in turning of AISI 1040 steel. Australian Journal of Mechanical Engineering, 20(3), 814–824. doi: 10.1080/14484846.2020.1756067
  • [6] Krishnan, R.S., Arulprakasajothi, M., Logesh, K., Raja, N.D., & Rajendra, M. (2018). Analysis and feasibility of nano-lubricant in vapour compression refrigeration system. Materials Today: Proceedings, 5(9), 20580−20587. doi: 10.1016/j.matpr.2018.06.437
  • [7] Peyyala, A.M., Sri, N.S., Sudheer, N., & Kumar, K.C.K. (2020). Experimental investigation on the effect of Nano lubrication in a VCR system using R410A Refrigerant with Al2O3 nanoparticles. International Journal of Mechanical and Production Engineering Research and Development, 10(3), 1761−1768.
  • [8] Choi, S.U.S., & Eastman, J.A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Laboratory, ASME International Mechanical Engineering Congress & Exposition, No. ANL/MSD/CP-84938; CONF951135-29. 12−17 November, San Francisco, USA.
  • [9] Saidur, R., Kazi, S.N., Hossain, M.S., Rahman, M.M., & Mohammed, H.A. (2011). A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable and Sustainable Energy Reviews, 15(1), 310−323. doi: 10.1016/j.rser.2010.08.018
  • [10] Ajayi, O.O., Ibia, D.E., Ogbonnaya, M., Attabo, A., & Michael, A. (2017). CFD analysis of nano-refrigerant through adiabatic capillary tube of vapour compression refrigeration system. Procedia Manufacturing, 7, 688−695. doi: 10.1016/j.promfg.2016.12.102
  • [11] Kostic, M. (2004). Advanced flow and heat transfer fluids. Department of Mechanical Engineering, Northern Illinois University, Illinois, Chicago.
  • [12] Vaishali, P.M., & Kale, N.W. (2017). Experimental analysis of vapour compression refrigeration system using nano-refrigerant. In Proceedings of 68th IRF International Conference, (pp. 90−94) 29 January, Pune, India.
  • [13] Bondre, D., Joshi, A., Shinde, T., Deshmukh, A., & Dhanawade, K. (2019). Experimental performance and analysis of domestic refrigeration system using nano-refrigerants. In Proceedings of International Conference on Intelligent Manufacturing and Automation Lecture Notes in Mechanical Engineering (pp. 389−399). Springer, Singapore.
  • [14] Nair, V., Tailor, P.R., & Parekh, A.D. (2016). Nano-refrigerants: A comprehensive review on its past, present and future. International Journal of Refrigeration, 67, 290−307. doi:10.1016/j.ijrefrig.2016.01.011
  • [15] Jiang, W., Ding, G., & Peng, H. (2009). Measurement and model on thermal conductivities of carbon nanotube nano-refrigerants. International Journal of Thermal Sciences, 48(6), 1108−1115. doi: 10.1016/j.ijthermalsci.2008.11.012
  • [16] Alawi, O.A., Sidik, N.A.C., & Kherbeet, A.S. (2016). The effects of nano-lubricants on boiling and two-phase flow phenomena: a review. International Communications in Heat and Mass Transfer, 75, 197−205. doi: 10.1016/j.icheatmasstransfer.2016.04.001
  • [17] Alawi, O.A., & Sidik, N.A.C. (2015). Applications of nanorefrigerant and nano-lubricants in refrigeration, air-conditioning and heat pump systems: A review. International Communications in Heat and Mass Transfer, 68, 91−97. doi: 10.1016/j.icheatmasstransfer.2015.08.014
  • [18] Sarkar, J., Ghosh, P., & Adil, A. (2015). A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164−177. doi:1016/j.rser.2014.11.023
  • [19] Wang, R.X., Zou, D.B., & Zhang, Q.L. (2003). An investigation on refrigerating system using HFC134a and mineral lubricant mixed with nano-particles TiO2(a) as working fluids. In Proceedings of the 4th International Conference on Compressor and Refrigeration (pp. 313−319). Xian Jiaotong University Press.
  • [20] Mohan, K., Sundararaj, S., Kannan, K.G., & Kannan, A. (2020). Experimental analysis on refrigeration system using CNT, gold and HAUCL4 nanofluids. Materials Today: Proceedings, 33, 360-366. doi: 10.1016/j.matpr.2020.04.156
  • [21] Subhedar, D.G., Patel, J.Z., & Ramani, B.M. (2020). Experimental studies on vapour compression refrigeration system using Al2O3/mineral oil nano-lubricant. Australian Journal of Mechanical Engineering, 20(4), 1136−1141. doi: 10.1080/14484846.2020.1784558
  • [22] Chauhan, S.S., Kumar, R., & Rajput, S P.S. (2019). Performance investigation of ice plant working with R134a and different concentrations of POE/TiO2 nano-lubricant using experimental method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(4), 163. doi: 10.1007/s40430-019-1657-3
  • [23] Subramani, N., & Prakash, M.J. (2011). Experimental studies on a vapour compression system using nano-refrigerants. International Journal of Engineering, Science and Technology, 3(9), 95−102. doi: 10.4314/ijest.v3i9.6
  • [24] Sitprasert, C., Dechaumphai, P., & Juntasaro, V. (2009). A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer. Journal of Nanoparticle Research, 11(6), 1465−1476. doi: 10.1007/s11051-008-9535-4
  • [25] Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics,20(4), 571−571. doi:10.1063/1.1700493
  • [26] Pak, B.C., & Cho, Y.I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer: An International Journal, 11(2),151−170. doi: 10.1080/08916159808946559
  • [27] Kole, M., & Dey, T.K. (2011). Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids. International Journal of Thermal Sciences, 50(9), 1741−1747. doi: 10.1016/j.ijthermalsci.2011.03.027
  • [28] Mahbubul, I.M., Saadah, A., Saidur, R., Khairul, M.A., & Kamyar, A. (2015). Thermal performance analysis of Al2O3/R134a nano-refrigerant. International Journal of Heat and Mass Transfer, 85, 1034−1040. doi: 10.1016/j.ijheatmasstransfer.2015.02.038
  • [29] Zawawi, N.N.M., Azmi, W.H., Redhwan, A A.M., Sharif, M.Z., & Sharma, K.V. (2017). Thermo-physical properties of Al2O3- SiO2/PAG composite nano-lubricant for refrigeration system. International Journal of Refrigeration, 80, 1−10. doi: 10.1016/j.ijrefrig.2017.04.024
  • [30] Ajayi, O.O., Ukasoanya, D.E., Ogbonnaya, M., Salawu, E.Y., Okokpujie, I.P., Akinlabi, S.A., & Owoeye, F.T. (2019). Investigation of the Effect of R134a/Al2O3–Nanofluid on the Performance of a Domestic Vapour Compression Refrigeration System. Procedia Manufacturing, 35, 112−117. doi: 10.1016/j.promfg.2019.05.012
  • [31] Soheel, A.H., Salih, M.M.M., & Mohammed, K.H. (2020). Energy observation technique for vapour absorption using nano fluid refrigeration. International Journal of Advanced Science and Technology, 29(12s), 1268−1281.
  • [32] Mahbubul, I.M., Fadhilah, S.A., Saidur, R., Leong, K.Y., & Amalina, M.A. (2013). Thermophysical properties and heat transfer performance of Al2O3/R-134a nano-refrigerants. International Journal of Heat and Mass Transfer, 57(1),100−108. doi: 10.1016/j.ijheatmasstransfer.2012.10.007
  • [33] Jiang, W., Ding, G., Peng, H., Gao, Y., & Wang, K. (2009). Experimental and model research on nano-refrigerant thermal conductivity. HVAC&R Research, 15(3), 651−669. doi: 10.1080/10789669.2009.10390855
  • [34] Patil, M.S., Kim, S.C., Seo, J.H., & Lee, M.Y. (2016). Review of the thermo-physical properties and performance characteristics of a refrigeration system using refrigerant-based nanofluids. Energies, 9(1), 22. doi: 10.3390/en9010022
  • [35] Liu, Y., & Hu. Y. (2017). Toward TiO2 nanofluids − Part 2: applications and challenges. Nanoscale Research Letters, 12,446, 1−21. doi: 10.1186/s11671-017-2185-7
  • [36] Alawi, O.A., Salih, J.M., & Mallah, A.R. (2019). Thermophysical properties effectiveness on the coefficient of performance of Al2O3/R141b nano-refrigerant. International Communications in Heat and Mass Transfer, 103, 54−61. doi:10.1016/j.icheatmasstransfer.2019.02.011
  • [37] Alawi, O.A., & Sidik, N.A.C. (2014). Influence of particle concentration and temperature on the thermophysical properties of CuO/R134a nano-refrigerant. International Communications in Heat and Mass Transfer, 58, 79−84. doi: 10.1016/j.icheatmasstransfer.2014.08.038
  • [38] Rahman, S., Issa, S., Said, Z., Assad, M.E.H., Zadeh, R., & Barani, Y. (2019). Performance enhancement of a solar powered air conditioning system using passive techniques and SWCNT/R407c nano refrigerant. Case Studies in Thermal Engineering, 16,100565. doi: 10.1016/j.csite.2019.100565
  • [39] Ajayi, O.O., Aba-Onukaogu, C.C., Salawu, E.Y., Owoeye, F.T., Akinlabu, D.K., Popoola, A.P.I., & Abioye, A.A. (2019). Effect of Biomaterial (Citrullus Lanatus Peels) Nano-lubricant on the Thermal Performance and Energy Consumption of R600a in Refrigeration System. In Energy Technology 2019 (pp. 91−102). Springer, Cham. doi: 10.1007/978-3-030-06209-5_9
  • [40] Sanukrishna, S.S., Murukan, M., & Jose, P.M. (2018). An overview of experimental studies on nano-refrigerants: recent research, development and applications. International Journal of Refrigeration, 88, 552−577. doi: 10.1016/j.ijrefrig.2018.03.013
  • [41] Dewan, A., Mahanta, P., Raju, K.S., & Kumar, P.S. (2004). Review of passive heat transfer augmentation techniques. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(7), 509−527. doi: 10.1243/0957650042456953
  • [42] Bianco, V., Manca, O., Nardini, S., & Vafai, K. (2015). Heat transfer enhancement with nanofluids (1 st ed.). CRC Press. doi:10.1201/b18324
  • [43] Bartelt, K., Park, Y., Liu, L., & Jacobi, A. (2008). Flow-boiling of R-134a/POE/CuO nanofluids in a horizontal tube. International Refrigeration and Air Conditioning Conference, Purdue University e-Pubs (paper no. 928), 14−17 July, West Lafayette, Indiana, USA.
  • [44] Coumaressin, T., & Palaniradja, K. (2014). Performance analysis of a refrigeration system using nanofluid. International Journal of Advanced Mechanical Engineering, 4(4), 459−470. Research India Publications.
  • [45] Eid, E.I., Khalaf-Allah, R.A., Taher, S.H., & Al-Nagdy, A.A. (2017). An experimental investigation of the effect of the addition of nano Aluminum oxide on pool boiling of refrigerant 134A. Heat and Mass Transfer, 53(8), 2597−2607. doi: 10.1007/s00231-017-2010-y
  • [46] Naas, K.S.M. (2016). Heat transfer enhancement in vapor compression refrigeration system using nanofluid with R-134a. Doctoral dissertation, Benha University, Faculty of Engineering, Mechanical Engineering Department.
  • [47] Sanukrishna, S.S., Ajmal, N., & Prakash, M.J. (2018). Thermophysical and heat transfer characteristics of R134a-TiO2 nanorefrigerant: A Numerical Investigation. Journal of Physics: Conference Series, 969(1), 012015. IOP Publishing. doi:10.1088/1742-6596/969/1/012015
  • [48] Pasha, K.M.K. (2019). Controlling the Nusselt Number in a TiO2/R134a Nano-refrigerant System. International Journal of Heat and Technology, 37(1), 179−187. doi: 10.18280/ijht.370122
  • [49] Sheikholeslami, M., Darzi, M., & Sadoughi, M.K. (2018). Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. International Journal of Heat and Mass Transfer, 122, 643−650. doi: 10.1016/j.ijheatmasstransfer.2018.02.015
  • [50] Sheikholeslami, M., Darzi, M., & Li, Z. (2018). Experimental investigation for entropy generation and exergy loss of nanorefrigerant condensation process. International Journal of Heat and Mass Transfer, 125, 1087−1095. doi: 10.1016/j.ijheatmasstransfer.2018.04.155
  • [51] Bayareh, M., & Mohammadi, M. (2016). Multi-objective optimization of a triple shaft gas compressor station using Imperialist Competitive Algorithm. Applied Thermal Engineering, 109, 384−400. doi: 10.1016/j.applthermaleng.2016.08.089
  • [52] Zendehboudi, A., & Tatar, A. (2017). Utilization of the RBF network to model the nucleate pool boiling heat transfer properties of refrigerant-oil mixtures with nanoparticles. Journal of Molecular Liquids, 247, 304−312. doi: 10.1016/j.molliq.2017.09.105
  • [53] Park, K.J., & Jung, D. (2007). Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building airconditioning. Energy and Buildings, 39(9), 1061−1064. doi:10.1016/j.enbuild.2006.12.001
  • [54] Park, K.J., & Jung, D. (2007). Enhancement of nucleate boiling heat transfer using carbon nanotubes. International Journal of Heat and Mass Transfer, 50(21−22), 4499−4502. doi: 10.1016/j.ijheatmasstransfer.2007.03.012
  • [55] Peng, H., Ding, G., Hu, H., Jiang, W., Zhuang, D., & Wang, K. (2010). Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles. International Journal of Refrigeration, 33(2), 347−358. doi: 10.1016/j.ijrefrig.2009.11.007
  • [56] Trisaksri, V., & Wongwises, S. (2009). Nucleate pool boiling heat transfer of TiO2–R141b nanofluids. International Journal of Heat and Mass Transfer, 52(5−6), 1582−1588. doi: 10.1016/j.ijheatmasstransfer.2008.07.041
  • [57] Ray, M., Deb, S., & Bhaumik, S. (2017). Experimental investigation of nucleate pool boiling heat transfer of R134a on TiO2 coated TF surface. Materials Today: Proceedings, 4(9),10002−10009. doi: 10.1016/j.matpr.2017.06.310
  • [58] Ray, M., & Bhaumik, S. (2019). Nucleate pool boiling heat transfer of hydro-fluorocarbon refrigerant R134a on TiO2 nanoparticle coated copper heating surfaces. Heat Engineering, 40(12), 997-1006. doi: 10.1080/01457632.2018.1450333
  • [59] Kedzierski, M.A., & Gong, M. (2009). Effect of CuO nanoparticle on R134a pool boiling heat transfer. International Journal of Refrigeration, 32(5), 791−799. doi: 10.1115/1.3072926
  • [60] Wang, R.X., Hao, B., Xie, G.Z., & Li, H.Q. (2003, October). A refrigerating system using HFC134a and mineral lubricant appended with n-TiO2 (R) as working fluids. In Proceedings of the 4th international symposium on HAVC, Tsinghua University Press, Beijing, China (pp. 888-892).
  • [61] Prasad, T.H., Reddy, R.P., & Rami Reddy, D.R. (2009). Exergy analysis of vapor compression refrigeration system. International Journal of Applied Engineering Research, 4, 2505−2526. doi:10.1016/S1164-0235(02)00079-1
  • [62] Adelekan, D.S., Ohunakin, O.S., Babarinde, T.O., Odunfa, M.K., Leramo, R.O., Oyedepo, S.O., & Badejo, D.C. (2017). Experimental performance of LPG refrigerant charges with varied concentration of TiO2 nano-lubricants in a domestic refrigerator. Case Studies in Thermal Engineering, 9, 55−61. doi:10.1016/j.csite.2016.12.002
  • [63] Dhondge, A.J., & Kalbande, S.R. (2019). Energy and Exergy analysis of SPV Powered Vapor compression Refrigeration system. International conference on EARES 2019.
  • [64] Yong, H., Bi, S.S., & Shi, L. (2006). Refrigerator with R134a/TiO2 nanoparticle system, Huagong Xuebao. Journal of Chemical Industry and Engineering (China), 57, 141−145.
  • [65] Padmanabhan, V.M.V., & Palanisamy, S. (2012). The use of TiO2 nanoparticles to reduce refrigerator irreversibility. Energy Conversion and Management, 59, 122−132. doi: 10.1016/j.enconman.2012.03.002
  • [66] Kumar, D.S., & Elansezhian, R. (2012). Experimental study on Al2O3-R134a nano refrigerant in refrigeration system. International Journal of Modern Engineering Research, 2(5),3927−3929.
  • [67] Raghavalu, K.V., Reddy, P.S., Khan, A.R., Kumar, D.V., & Prashanth, T. (2016). Improvement of COP of vapor compression refrigeration system by using nanorefrigerants. In IJSRD| National Conference on Recent Trends and Innovations in Mechanical Engineering (pp. 172−175).
  • [68] Harichandran, R., Paulraj, P., Raja, S.M.P., & Raman, J.K. (2019). Effect of h-BN solid nano-lubricant on the performance of R134a–polyolesteroil-based vapour compression refrigeration system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(3), 140. doi: 10.1007/s40430-019-1645-7
  • [69] Pico, D.F.M., da Silva, L.R.R., Schneider, P.S., & Bandarra Filho, E. P. (2019). Performance evaluation of diamond nanolubricants applied to a refrigeration system. International Journal of Refrigeration, 100, 104−112. doi: 10.1016/j.ijrefrig.2018.12.009
  • [70] Sabareesh, R.K., Gobinath, N., Sajith, V., Das, S., & Sobhan, C.B. (2012). Application of TiO2 nanoparticles as a lubricantadditive for vapor compression refrigeration systems–An experimental investigation. International Journal of Refrigeration, 35(7), 1989−1996. doi: 10.1016/j.ijrefrig.2012.07.002
  • [71] Kumar, D.S., & Elansezhian, R. (2014). ZnO nano-refrigerant in R152a refrigeration system for energy conservation and green environment. Frontiers of Mechanical Engineering, 9(1), 75−80.doi: 10.1007/s11465-014-0285-y
  • [72] Ajuka, L.O., Odunfa, M.K., Ohunakin, O.S., & Oyewola, M.O. (2017). Energy and exergy analysis of vapour compression refrigeration system using selected eco-friendly hydrocarbon refrigerants enhanced with TiO2-nanoparticle. International Journal of Engineering and Technology, 6(4), 91−97. doi:10.14419/ijet.v6i4.7099
  • [73] Bi, S., Guo, K., Liu, Z., & Wu, J. (2011). Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conversion and Management, 52(1), 733−737. doi: 10.1016/j.enconman.2010.07.052
  • [74] Bi, S.S., Shi, L., & Zhang, L.L. (2008). Application of nanoparticles in domestic refrigerators. Applied Thermal Engineering, 28(14−15), 1834−1843. doi: 10.1016/j.applthermaleng.2007.11.018
  • [75] Javadi, F. S., & Saidur, R. (2013). Energetic, economic and environmental impacts of using nano-refrigerant in domestic refrigerators in Malaysia. Energy Conversion and Management, 73, 335−339. doi: 10.1016/j.enconman.2013.05.013
  • [76] Ohunakin, O.S., Adelekan, D.S., Babarinde, T.O., Leramo, R.O., Abam, F.I., & Diarra, C.D. (2017). Experimental investigation of TiO2-, SiO2-, and Al2O3-lubricants for a domestic refrigerator system using LPG as working fluid. Applied Thermal Engineering, 127, 1469−1477. doi: 10.1016/j.applthermaleng.2017.08.153
  • [77] Gill, J., Singh, J., Ohunakin, O.S., & Adelekan, D.S. (2019). Energy analysis of a domestic refrigerator system with ANN using LPG/TiO2–lubricant as replacement for R134a. Journal of Thermal Analysis and Calorimetry, 135(1), 475−488. doi:10.1007/s10973-018-7327-3
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f906759-5b6f-49a4-aa2f-8503fd87d9e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.